

ITEC 621 Predictive Analytics 6. Variable Selection

Multi-Collinearity XI(*) - X's are not independent (are correlated)

Y = X * B

Approximately: X has no inverse because its columns are dependent

Really: X'*X has no (pseudo)-inverse because its columns are (too) dependent

Testing for Multi-Collinearity

- First, you need to analyze the correlation matrix and inspect for desirable correlations → high between the dependent and any independent variable; and low among independent variables.
- Run your regression model and report **multi-collinearity statistics** in the results. Two are most widely used:
 - Condition Index (CI): a composite score of the linear association of all independent variables for the model as a whole
 - Rule of thumb: CI < 30 no problem, 30 < CI < 50 some concern, CI > 50 severe, no good
 - ➤ Variance Inflation Factors (VIF): a statistic measuring the contribution of each predictor (X_i) to the model's multicollinearity, which helps figure out which variables are problematic

 \checkmark VIF $(X_i) = \frac{1}{1 - R^2(for X_i regressed against all other predictors)}$

✓ Rule of thumb: VIF < 10 no problem, VIF >= 10 too high,

Variable Selection Methods

XI(*) - X's are not independent (are correlated)

Subset Comparison: Intuition

You can test any 2 related models: Large vs. Reduced (or Restricted):

Reduced Model: $Y = \theta_0 + \theta_1(X_1) + \theta_2(X_2) + \dots + \varepsilon$ Large Model: $Y = \theta_0 + \theta_1(X_1) + \theta_2(X_2) + \dots + \theta_3(X_3) + \theta_4(X_4) + \varepsilon$

- We need to test if the Large model's SSE is significantly lower than the Reduced model's SSE, taking into account the loss of degrees of freedom caused by adding more variables to the model.
- We can do this with an **ANOVA F-Test** (or any other fit statistic comparison).
- Generally, if any of the added coefficients to the Full Model are significant, the ANOVA F-Test will also be significant, but this is not always the case. The F-Test rules.

Best Subset Selection: Intuition

Suppose you have P possible predictors \rightarrow 2 extreme models: Null Model (NO predictors): $Y = \theta_0 + \varepsilon$ Full Model (ALL predictors): $Y = \theta_0 + \theta_1(X_1) + \theta_2(X_2) + \dots + \theta_p(X_p) + \varepsilon$

library(ISLR) # Contains Hitters data set

lm.reduced <- lm(Salary ~ AtBat + Hits + Walks, data=Hitters)
lm.large <- lm(Salary ~ AtBat + Hits + Walks + Division + PutOuts, data=Hitters)
lm.full <- lm(Salary ~ AtBat + Hits + Walks + Division + PutOuts + Errors, data=Hitters)
summary(lm.reduced); summary(lm.large); summary(lm.full)
anova(lm.reduced, lm.large, lm.full) # Compare all 3 models (from smaller to larger)</pre>

Null Model

...

Full Model

7

Best Subset Selection: Intuition

Suppose you have P possible predictors \rightarrow 2 extreme models:

Null Model (**NO** predictors): $Y = \theta_0 + \varepsilon$

Full Model (ALL predictors): $Y = \theta_0 + \theta_1(X_1) + \theta_2(X_2) + \dots + \theta_p(X_p) + \varepsilon$

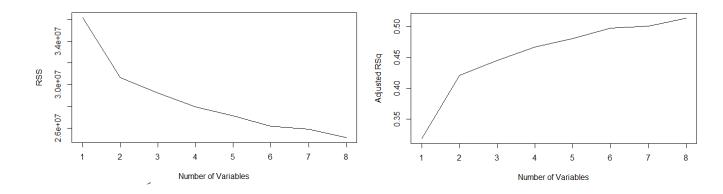
- Start with the Null model, then try all single-predictor models, then all possible 2-predictor models, etc., ending with the Full model
- Then compare all resulting models using cross-validation
- This method works well when P is small because you end up testing all possible models
- But if P is large, the pool of possible models will grow exponentially (2^P-1) and it may not be computationally practical to test all of them.
 - > 10 variables \rightarrow 2¹⁰-1 = 1,024 models
 - > 20 variables → 2^{20} -1 = 1,048,576 models
- There are **R packages** for best subset selection, with algorithms to test most **plausible models**.

R Example: Best Subset Selection

library(ISLR) # Needed for the Hitters data set library(leaps) # Contains the regsubsets() function for subset selection regfit.full=regsubsets(Salary~., Hitters) # Fit the full model summary(regfit.full) reg.summary <- summary(regfit.full) plot(reg.summary\$rss, xlab="Number of Variables", ylab="RSS",type="l") plot(reg.summary\$adjr2, xlab="Number of Variables", ylab="Adjusted RSq", type="l")

Selection Algorithm: exhaustive

		AtBat	Hits	HmRun	Runs	RBI	Walks	Years	CAtBat	CHits	CHmRun	CRuns	CRBI	CWalks	LeagueN	DivisionW	PutOuts	Assists	Errors	NewLe
1	(1)																			
2	(1)		"*"										0 8 0							
3	(1)		"*"										"*"				"*"			
4	(1)		"*"										" * "			"*"	0.5 U			
5	(1)															"*"	0 8 0			
6	(1)	"*"	"*"				"*"						0 8 0			"*"	"*"			
7	(1)		"*"				"*"		"*"	"*"	"*"					"*"	"*"			
8	(1)	"*"	"*"				0 6 0				1.8 U	0 6 0		" 5 "		11 2 11	0.8 U			



Breakout 1

Regularization in Sports Analytics

ITEC 621, Week 6

All-Star



Magazine

New York Times

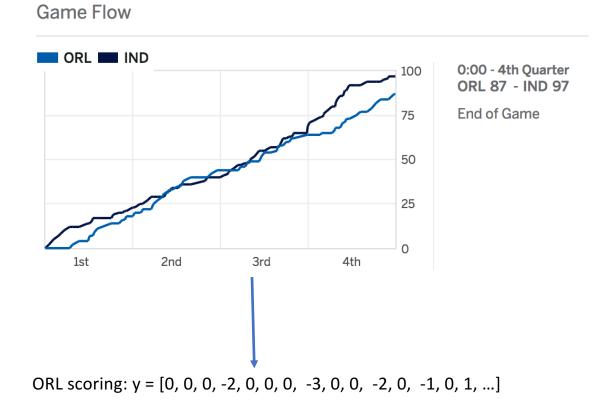
The No-Stats All-Star

By MICHAEL LEWIS FEB. 13, 2009

Plus-Minus Totals, 10/29/13

Indiana Pacers		Orlando Magic	
PLAYER	+/-	PLAYER	+/-
Paul George ^F	11	Jason Maxiell ^F	-15
David West ^F	11	Maurice Harkless ^F	-3
Roy Hibbert ^C	14	Nikola Vucevic ^C	-22
Lance Stephenson ^G	11	Arron Afflalo ^G	-14
George Hill ^G	5	Jameer Nelson ^G	-11
Orlando Johnson	11	Victor Oladipo	-11
Luis Scola	-2	Andrew Nicholson	0
C.J. Watson	2	E'Twaun Moore	3
Solomon Hill	-10	Kyle O'Quinn	10
lan Mahinmi	0	Ronnie Price	б
Rasual Butler	-3	Solomon Jones	7
Chris Copeland		Tobias Harris	
Donald Sloan		Doron Lamb	
Totals:	10	Totals:	-10

Adjusted Plus-Minus Each possession



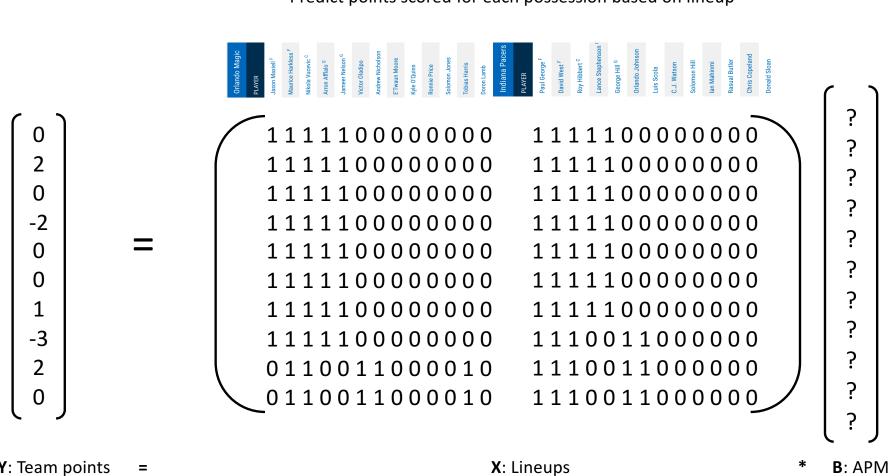
(IND scoring: y = [0, 0, 0, +2, 0, 0, 0, +3, 0, 0, +2, 0, +1, 0, -1 ...])

Plus Minus (PM): How many (net) points does the team score while a player plays?

Adjusted Plus-Minus (APM): Predictive model for PM based on lineups (i.e. improves PM by controlling for teammate & opponent quality)

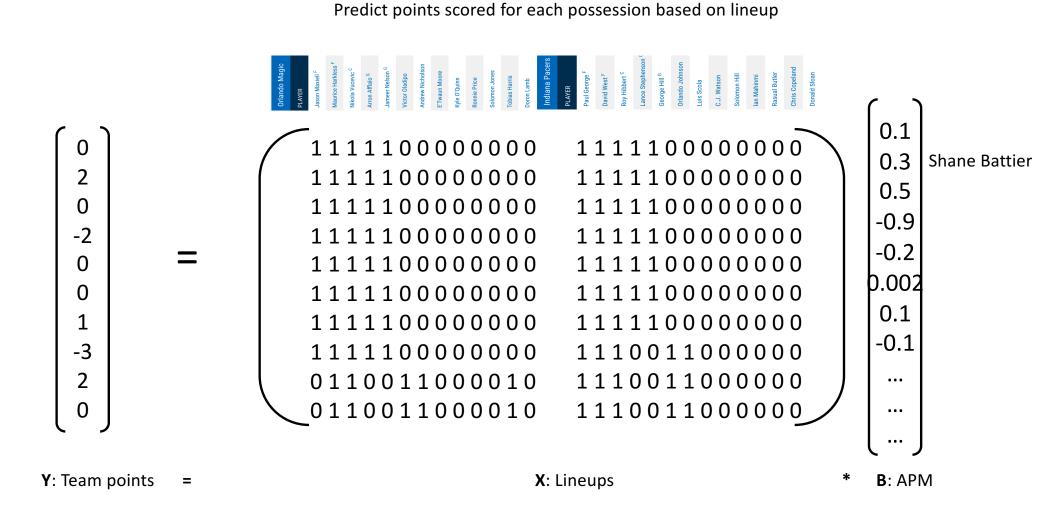
Regularized APM (RAPM):APM, with regularization to overcome
multicollinearity & small samples
(i.e. tries to identify players with most
impact)

() h	6-17 Real Plus-Minus							
RK	NAME	TEAM	GP	MPG	ORPM	DRPM	<u>RPM</u>	WINS
1	Chris Paul, PG	LAC	61	31.5	5.16	2.77	7.93	13.50
2	LeBron James, SF	CLE	74	37.8	6.16	1.44	7.60	18.98
3	Stephen Curry, PG	GS	79	33.4	6.74	0.43	7.17	18.37
4	Nikola Jokic, PF	DEN	73	27.9	4.44	2.27	6.71	13.15
5	Jimmy Butler, SF	CHI	76	37.0	4.83	1.81	6.64	17.38
6	Kawhi Leonard, SF	SA	74	33.4	5.72	0.92	6.64	14.86
7	Draymond Green, PF	GS	76	32.5	1.61	5.01	6.62	15.99
8	Rudy Gobert, C	UTAH	81	33.9	0.36	6.14	6.50	15.76
9	Russell Westbrook, PG	ОКС	81	34.6	6.75	-0.47	6.28	17.36
10	Kyle Lowry, PG	TOR	60	37.4	4.66	1.14	5.80	12.56
11	Kevin Durant, SF	GS	62	33.4	4.00	1.41	5.41	11.78
12	James Harden, SG	HOU	81	36.4	6.51	-1.69	4.82	15.56
13	Paul Millsap, PF	ATL	69	34.0	1.22	3.39	4.61	11.50
14	Kevin Love, PF	CLE	60	31.4	2.62	1.95	4.57	9.2
15	DeAndre Jordan, C	LAC	81	31.7	1.12	3.43	4.55	12.59
16	Mike Conley, PG	MEM	69	33.2	4.67	-0.20	4.47	10.50
17	Anthony Davis, PF	NO	75	36.1	0.46	3.90	4.36	12.83
18	Giannis Antetokounmpo, SF	MIL	80	35.6	2.35	1.86	4.21	13.00
19	DeMarcus Cousins, PF	NO/SAC	72	34.2	3.56	0.64	4.20	11.26
20	Jae Crowder, SF	BOS	72	32.4	2.45	1.60	4.05	10.76



Adjusted Plus-Minus (APM): Predict points scored for each possession based on lineup

Y: Team points



Adjusted Plus-Minus (APM):

Regularization:

Adding a penalty term to the error function before minimizing it

Ridge Regression

 $SSE(R) = SSE + shrinkage penalty = SSE + \lambda (\beta_1^2 + \beta_2^2 + \beta_3^2 + etc.)$

LASSO Regression

 $SSE(L) = SSE + shrinkage penalty = SSE + \lambda (|\beta_1| + |\beta_2| + |\beta_3| + etc.)$

λ **Tuning parameter**: How much to regularize?

 $SSE(R) = SSE + shrinkage penalty = SSE + \lambda (\beta_1^2 + \beta_2^2 + \beta_3^2 + etc.)$ $SSE(L) = SSE + shrinkage penalty = SSE + \lambda (|\beta_1| + |\beta_2| + |\beta_3| + etc.)$

 λ **Tuning parameter**: How much to regularize?

- > We can vary the penalty λ thus **controlling** the **shrinkage**
- > If we set $\lambda = 0$, Ridge minimizes SSE \rightarrow same as OLS
- If we set λ very large, then the resulting β's have to be very small → i.e., we shrink the coefficients
- > If we set $\lambda = 0$, LASSO minimizes SSE \rightarrow same as OLS
- > If we set $\lambda = \infty$, LASSO yields the **null model y** = β_0

