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Multi-Collinearity
XI(û) – X’s are not independent (are correlated)

Y = X * B

Approximately: X has no inverse because its columns are dependent

Really: X’*X has no (pseudo)-inverse because its columns are (too) dependent
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Testing for Multi-Collinearity
• First,	you	need	to	analyze	the	correlation	matrix	and	inspect	for	desirable

correlations	à high between	the	dependent and	any	independent variable;	
and	low among	independent	variables.

• Run	your	regression	model	and	report	multi-collinearity	statistics	in	the	
results.	Two	are	most	widely	used:

Ø Condition	Index	(CI): a	composite	score	of	the	linear	association	of	all	
independent	variables	for	the	model as	a	whole
üRule	of	thumb:	CI	<	30 no	problem,	30	<	CI	<	50 some	concern,	CI	>	50	
severe,	no	good

Ø Variance	Inflation	Factors	(VIF):	a	statistic	measuring	the	contribution	of	
each	predictor	(Xi	) to	the	model’s	multicollinearity,	which	helps	figure	
out	which	variables	are	problematic

ü 𝑽𝑰𝑭 𝑿𝒊 = 𝟏
𝟏-𝑹𝟐 𝒇𝒐𝒓	𝑿𝒊	𝒓𝒆𝒈𝒓𝒆𝒔𝒔𝒆𝒅	𝒂𝒈𝒂𝒊𝒏𝒔𝒕	𝒂𝒍𝒍	𝒐𝒕𝒉𝒆𝒓	𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒐𝒓𝒔

ü Rule	of	thumb:	VIF	<	10 no	problem,	VIF	>=	10	too	high,
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Variable Selection Methods
XI(û) – X’s are not independent (are correlated)
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Subset Comparison: Intuition

• We need to test if the Large model’s SSE is significantly lower than 
the Reduced model’s SSE, taking into account the loss of degrees 
of freedom caused by adding more variables to the model.

• We can do this with an ANOVA F-Test (or any other fit statistic 
comparison).

• Generally, if any of the added coefficients to the Full Model are 
significant, the ANOVA F-Test will also be significant, but this is not 
always the case. The F-Test rules. 

You	can	test	any	2	related	models:	
Large vs.	Reduced (or	Restricted):

Reduced Model: Y	=	β0 +	β1(X1)	+	β2(X2)	+	……	+	ε
Large Model: Y	=	β0 +	β1(X1)	+	β2(X2)	+	……	+	β3(X3)	+	β4(X4)	+	ε
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Best Subset Selection: Intuition
Suppose	you	have	P	possible	predictors	à 2	extreme	models:

Null	Model	(NO predictors):	Y	=	β0 +	 ε
Full	Model	(ALL predictors):	Y	=	β0 +	β1(X1)	+	β2(X2)	+	……	+	βP(XP)	+	ε
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library(ISLR) # Contains Hitters data set
lm.reduced <- lm(Salary ~ AtBat + Hits + Walks, data=Hitters)
lm.large <- lm(Salary ~ AtBat + Hits + Walks + Division + PutOuts, data=Hitters)
lm.full <- lm(Salary ~ AtBat + Hits + Walks + Division + PutOuts + Errors, data=Hitters)
summary(lm.reduced); summary(lm.large); summary(lm.full)
anova(lm.reduced, lm.large, lm.full) # Compare all 3 models (from smaller to larger)

Example: Subset Comparison

Null	Model
…

…
Full	Model
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Best Subset Selection: Intuition

• Start with the Null model, then try all single-predictor models, 
then all possible 2-predictor models, etc., ending with the Full 
model

• Then compare all resulting models using cross-validation
• This method works well when P is small because you end up 

testing all possible models
• But if P is large, the pool of possible models will grow exponentially 

(2P-1) and it may not be computationally practical to test all of them.
Ø 10 variables à 210-1 = 1,024 models
Ø 20 variables à 220-1 = 1,048,576 models

• There are R packages for best subset selection, with algorithms to 
test most plausible models.

Suppose	you	have	P	possible	predictors	à 2	extreme	models:
Null	Model	(NO predictors):	Y	=	β0 +	 ε

Full	Model	(ALL predictors):	Y	=	β0 +	β1(X1)	+	β2(X2)	+	……	+	βP(XP)	+	ε
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library(ISLR) # Needed for the Hitters data set
library(leaps) # Contains the regsubsets() function for subset selection
regfit.full=regsubsets(Salary~., Hitters) # Fit the full model
summary(regfit.full)
reg.summary <- summary(regfit.full)
plot(reg.summary$rss, xlab="Number of Variables", ylab="RSS",type="l")
plot(reg.summary$adjr2, xlab="Number of Variables", ylab="Adjusted RSq", type="l")

Example: Best Subset Selection
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All-Star



New	York	Times



Plus-Minus
Totals,	10/29/13

ORL	scoring:	y	=	[0,	0,	0,	-2,	0,	0,	0,		-3,	0,	0,		-2,	0,		-1,	0,	1,	…]

(IND	scoring:	y	=	[0,	0,	0,	+2,	0,	0,	0,	+3,	0,	0,	+2,	0,	+1,	0,	-1	…])

Adjusted	Plus-Minus
Each	possession



Plus	Minus	(PM):

Adjusted	Plus-Minus	(APM):

Regularized	APM	(RAPM):

How	many	(net)	points	does	the	team	
score	while	a	player	plays?

Predictive	model	for	PM based	on	lineups	
(i.e.	improves	PM by	controlling	for	
teammate	&	opponent	quality)

APM,	with	regularization	to	overcome	
multicollinearity	&	small	samples

(i.e.	tries	to	identify	players	with	most	
impact)
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Adjusted	Plus-Minus	(APM):
Predict	points	scored	for	each	possession	based	on	lineup

?
?
?
?
?
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?
?
?
?
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=

X:	Lineups B:	APMY:	Team	points *=

1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
0	1	1 0	0	1	1	0 0	0	0	1	0
0	1	1	0	0	1	1	0	0	0	0	1	0

1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	0	0	1	1	0	0	0	0	0	0
1	1	1	0	0	1	1	0	0	0	0	0	0
1	1	1	0	0	1	1	0	0	0	0	0	0
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Adjusted	Plus-Minus	(APM):
Predict	points	scored	for	each	possession	based	on	lineup

0.1
0.3
0.5
-0.9
-0.2
0.002
0.1
-0.1
…
…
…

=

X:	Lineups B:	APMY:	Team	points *=

1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
0	1	1 0	0	1	1	0 0	0	0	1	0
0	1	1	0	0	1	1	0	0	0	0	1	0

1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	0	0	1	1	0	0	0	0	0	0
1	1	1	0	0	1	1	0	0	0	0	0	0
1	1	1	0	0	1	1	0	0	0	0	0	0

Shane	Battier



Regularization:
Adding	a	penalty	term	to	the	error	function	

before	minimizing	it

Ridge	Regression

LASSO	Regression

Tuning	parameter:	How	much	to	regularize?



Tuning	parameter:	How	much	to	regularize?
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Regularized	Adjusted	Plus-Minus	(RAPM)
APM	with	regularization	for	multicollinearity	&	small	samples	

Ridge	regularization

=

X:	Lineups B:	RAPMY:	Team	points *=

1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
0	1	1 0	0	1	1	0 0	0	0	1	0
0	1	1	0	0	1	1	0	0	0	0	1	0

1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	0	0	1	1	0	0	0	0	0	0
1	1	1	0	0	1	1	0	0	0	0	0	0
1	1	1	0	0	1	1	0	0	0	0	0	0

0.01
0.03
0.53
-0.95
-0.22

0.00002
0.001
…
…
…
…
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Regularized	Adjusted	Plus-Minus	(RAPM)
APM	with	regularization	for	multicollinearity	&	small	samples	

LASSO	regularization

=

X:	Lineups B:	RAPMY:	Team	points *=

1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
0	1	1 0	0	1	1	0 0	0	0	1	0
0	1	1	0	0	1	1	0	0	0	0	1	0

1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	0	0	1	1	0	0	0	0	0	0
1	1	1	0	0	1	1	0	0	0	0	0	0
1	1	1	0	0	1	1	0	0	0	0	0	0

0
0.4
0.7
-1.1
0
0
0
…
…
…
…


