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ABSTRACT 

 Understanding the factors shaping neuronal spiking is a central problem in 

neuroscience. Neurons may have complicated sensitivity and, often, are embedded in 

dynamic networks whose ongoing activity may influence their likelihood of spiking. One 

approach to characterizing neuronal spiking is the point process generalized linear model 

(GLM), which decomposes spike probability into explicit factors. This model represents 

a higher level of abstraction than biophysical models, such as Hodgkin-Huxley, but 

benefits from principled approaches for estimation and validation. 

 Here we address how to infer factors affecting neuronal spiking in different types 

of neural systems. We first extend the point process GLM, most commonly used to 

analyze single neurons, to model population-level voltage discharges recorded during 

human seizures. Both GLMs and descriptive measures reveal rhythmic bursting and 

directional wave propagation. However, we show that GLM estimates account for 

covariance between these features in a way that pairwise measures do not. Failure to 

account for this covariance leads to confounded results. We interpret the GLM results to 

speculate the mechanisms of seizure and suggest new therapies. 
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 The second chapter highlights flexibility of the GLM. We use this single 

framework to analyze enhancement, a statistical phenomenon, in three distinct systems. 

Here we define the enhancement score, a simple measure of shared information between 

spike factors in a GLM. We demonstrate how to estimate the score, including confidence 

intervals, on a simulated network. In real networks, we find that enhancement occurs 

prominently during human seizure, while redundancy tends to occur in mouse auditory 

networks. We discuss implications for physiology, particularly during seizure. 

 In the third part of this thesis, we apply point process modeling to spike trains 

recorded from single units in vitro under external stimulation. We re-parameterize models 

in a low-dimensional and physically interpretable way; namely, we represent their effects 

in principal component space. We show that this approach successfully separates the 

neurons observed in vitro into different classes consistent with their gene expression 

profiles. 

 Taken together, this work contributes a statistical framework for analyzing 

neuronal spike trains and demonstrates how it can be applied to create new insights into 

clinical and experimental data sets.  



ix 

TABLE OF CONTENTS 

 

 

TITLE PAGE ....................................................................................................................... i 

COPYRIGHT ...................................................................................................................... ii 

APPROVAL PAGE ........................................................................................................... iii 

DEDICATION ................................................................................................................... iv 

ACKNOWLEDGMENTS .................................................................................................. v 

ABSTRACT ...................................................................................................................... vii 

TABLE OF CONTENTS ................................................................................................... ix 

LIST OF TABLES ............................................................................................................ xii 

LIST OF FIGURES ......................................................................................................... xiii 

LIST OF ABBREVIATIONS ........................................................................................... xv 

CHAPTER I. INTRODUCTION ........................................................................................ 1 

1. Issues in Spike Train Analysis .................................................................................... 2 

2. Generalized Linear Models in Neuroscience .............................................................. 3 

2.1 Point process GLM ............................................................................................... 3 

2.2 Applications of point process models in neuroscience ......................................... 9 

3. Summary of Dissertation: Motivation and Approach ............................................... 10 

3.1 Chapter II. Two categories of ictal discharges propagate with different 

spatiotemporal dyamics during human seizure ......................................................... 11 



x 

3.2 Chapter III. Point process modeling reveals a unique type of enhancement during 

human seizures .......................................................................................................... 12 

3.3 Chapter IV. Point process modeling reveals a hierarchy of functional cell types 

based on self-history dependence ............................................................................. 14 

CHAPTER II. TWO CATEGORIES OF ICTAL DISCHARGES PROPAGATE WITH 

DIFFERENT SPATIOTEMPORAL DYNAMICS DURING HUMAN SEIZURE ........ 17 

1. Introduction ............................................................................................................... 17 

2. Methods..................................................................................................................... 20 

2.1. Patients and recordings ...................................................................................... 20 

2.2. Ictal discharge identification and clustering ...................................................... 22 

2.3. Calculation of speed ........................................................................................... 26 

2.4. Point process analysis ........................................................................................ 27 

2.5. Directional analysis ............................................................................................ 31 

3. Results ....................................................................................................................... 34 

4. Discussion ................................................................................................................. 52 

CHAPTER III. POINT PROCESS MODELING REVEALS A UNIQUE TYPE OF 

ENHANCEMENT DURING HUMAN SEIZURES ........................................................ 59 

1. Introduction ............................................................................................................... 59 

2. Methods..................................................................................................................... 60 

2.1. Data .................................................................................................................... 61 

2.2. Point process modeling ...................................................................................... 64 

3. Results ....................................................................................................................... 71 



xi 

4. Discussion ................................................................................................................. 86 

CHAPTER IV. POINT PROCESS MODELING REVEALS A HIERARCHY OF 

FUNCTIONAL CELL TYPES BASED ON SELF-HISTORY DEPENDENCE ............ 92 

1. Introduction ............................................................................................................... 92 

2. Methods..................................................................................................................... 93 

2.1. Medial entorhinal cortex data ............................................................................ 94 

2.2. Allen Institute Cell Types data .......................................................................... 95 

2.3. Point process model ........................................................................................... 98 

3. Results ..................................................................................................................... 101 

4. Discussion ............................................................................................................... 108 

CHAPTER V. CONCLUSION ....................................................................................... 111 

1. Innovation and Impact ............................................................................................ 111 

1.1. A rigorous and patient-specific approach to seizure analysis .......................... 111 

1.2. A generalizable method for measuring enhancement ...................................... 112 

1.3. A method for clustering neurons according to their function .......................... 112 

2. Future Directions .................................................................................................... 113 

2.1. Understanding and extending enhancement .................................................... 113 

2.2. Clustering by functional profile ....................................................................... 116 

BIBLIOGRAPHY ........................................................................................................... 118 

CURRICULUM VITAE ................................................................................................. 136 

  

  



xii 

LIST OF TABLES 

Table II.1. Patients with implanted MEA. ........................................................................ 21 

Table II.2. Total counts of identified ictal discharges, large amplitude discharges, and 

small amplitude discharges.. ..................................................................................... 23 

Table II.3. Features of spatial waves for LADs and SADs ............................................... 26 

Table II.4. Summary of distributions of LAD directionality. ........................................... 47 

Table II.5. Summary of differences in directionality between large and small amplitude 

discharges .................................................................................................................. 51 

Table III.1. Differences between estimated and true paramters for individual and joint 

models. ...................................................................................................................... 78 

Table IV.1. Cre driver lines in the Allen Cell Types Database. ....................................... 97 

Table IV.2. Spiking profile clusters correlate with genetic cell type in MEC interneurons.

................................................................................................................................. 103 

 

  



xiii 

LIST OF FIGURES 

Figure II.1. Ictal discharges propagate in waves with multi-faceted structure. ................ 25 

Figure II.2. Overview of analysis approach for estimation of spatiotemporal structure 

from point process data. ............................................................................................ 33 

Figure II.3. Correlation analyses reveal multiple time scales and directionality in ID 

dynamics but suffer from confounding effects. ........................................................ 39 

Figure II.4. Modeling analyses reveal multiple time scales and directionality in ID 

dynamics without the confounds of descriptive analyses.. ....................................... 43 

Figure II.5. Modeling analysis of small amplitude discharges reveals effects that depend 

on both SADs and LADs. ......................................................................................... 49 

Figure III.1. Enhancement is measured by analyzing the model hierarchy. ..................... 70 

Figure III.2. Enhancement depends on the type of system feedback ................................ 73 

Figure III.3. Confidence intervals for the enhancement score can be reliably bootstrapped 

with data. ................................................................................................................... 81 

Figure III.4. Enhancement is prevalent in ictal discharges during human seizure. .......... 84 

Figure III.5. Mouse cortical networks show redundancy and independence between spike 

trains during passive listening. .................................................................................. 85 

Figure IV.1. MEC interneurons' spiking profiles can be clustered into groups based on 

their estimated intrinsic effects. .............................................................................. 102 

Figure IV.2. Allen Database neurons' spiking profiles can be clustered into groups based 

on their estimated intrinsic effects. ......................................................................... 105 



xiv 

Figure IV.3. Spiking profile clusters correlate with genetic cell type from the Allen Cell 

Types Database . ..................................................................................................... 107 

 

  



xv 

 

LIST OF ABBREVIATIONS 

ACF / CCF ........................................................................ Auto / cross-correlation function 

AC ................................................................................................................ Auditory cortex 

CIF .........................................................................................Conditional intensity function 

FS ....................................................................................................................... Fast spiking 

GAD .......................................................................................  Glutamic acid decarboxylase 

GLM .............................................................................................. Generalized linear model 

ID ................................................................................................................... Ictal discharge 

IID ......................................................................................................... Inter-ictal discharge 

ISI ............................................................................................................ Inter-spike interval 

KS ...................................................................................................... Kolmogorov-Smirnov 

LAD ............................................................................................ Large amplitude discharge 

LIF................................................................................................... Leaky integrate-and-fire 

LFP ........................................................................................................ Local field potential 

MEA ....................................................................................................Micro-electrode array 

MEC ............................................................................................... Medial entorhinal cortex 

PCA ........................................................................................ Principal component analysis 

PFC .............................................................................................................Prefrontal cortex 

PV ..................................................................................................................... Parvalbumin 

PID ........................................................................................................... Pre-ictal discharge 

SAD............................................................................................. Small amplitude discharge



1 

 

 

CHAPTER I. INTRODUCTION 

Action potentials, or spikes, are thought to be the primary means of 

communication in the brain. Characterizing ongoing spike patterns and the factors that 

affect them is a fundamental problem spanning both cellular and systems neuroscience. 

At the cellular level, spikes convey information about individual neurons, such as the 

types of ion channels present, how a neuron adapts to changing inputs, and the cell's 

preferred stimulus. At the network level, spikes shed light on coordination among cells, 

providing insight into which neurons are connected and how information flows through a 

network. 

Computational theories of the brain seek to address both how neurons spike (e.g. 

the biophysical or dynamical mechanisms) and why spike patterns have particular 

structure (e.g. evoked by a stimulus or ongoing correlations). Exploration of these 

complex issues benefits from two complementary modeling approaches. The first 

approach is to build detailed mathematical models with hundreds or thousands of 

equations and variables (Traub et al., 2005a; Markram et al., 2015; Hawrylycz et al., 

2016). Many neuroscientists prefer such models because the model terms represent 

familiar – and directly controllable – quantities. However, this high-dimensional 

representation comes at a cost. Analyzing detailed models typically involves the 

numerical integration of a large number of coupled differential equations with many 

unknown parameters; a complete understanding of the model’s behavior can be time 

consuming, and the best procedure to constrain unknown model parameters is not known. 
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The complementary approach is to formulate statistical models with a small number of 

equations and variables (Okatan et al., 2005). Statistical models trade precision for 

conciseness; as a result, statistical models are relatively easy to simulate and analyze, and 

principled methods exist to constrain these models directly from data.  

 

This dissertation deals primarily with the second approach: building small, 

analytically tractable models of neural spiking. We apply a specific modeling framework, 

the point process generalized linear model (GLM), to five different sets of spike trains.  

These spike trains consist of single- and multi-unit action potentials, simulated data, and 

a non-standard type of spike: a population-wide voltage discharge that occurs during 

human seizure, or “ictal spike.” With only minor modifications, the same GLM 

framework successfully characterizes all five sets of spike data. In this chapter, we first 

discuss general approaches and issues to model-building in neuroscience. We then briefly 

review concepts related to the point process GLM and survey its use in neuroscience. 

Finally, we summarize the results presented in Chapters II-IV, the three implementations 

of the point process GLM that comprise this dissertation. We conclude in Chapter V with 

a summary of the research and proposals for continued work. 

 

1. Issues in Spike Train Analysis 

 Neuroscientists probe the brain by collecting experimental data and explaining it 

with mathematical models. Modern technologies like spatially-dense electrodes (Blanche 
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2005; Scholvin et al. 2016), calcium imaging (Kerr and Denk 2008; Hawrylycz et al. 

2016), and optogenetics (Stanley 2013) provide high-resolution ways to record  and 

control neural circuits. They also generate large data sets, which demand powerful and 

efficient tools for spike train analysis (Brown et al. 2004; Horwitz 2016). Point process 

theory, a statistical framework for characterizing event data such as spike trains, offers a 

language with which to develop these tools. 

 

2. Generalized Linear Models in Neuroscience 

 In this section we briefly motivate and define concepts related to the generalized 

linear model (GLM) framework for spike train analysis. We then review previous uses of 

the GLM in neuroscience, highlighting several practical advantages. Although the review 

focuses on the GLM's role in analyzing neural coding, point process theory can be 

applied in other contexts, such as inferring spike times from calcium imaging (Vogelstein 

et al. 2009; Pnevmatikakis et al. 2013). 

 

2.1 Point process GLM 

2.1.1. Point processes. Spikes are stereotyped events isolated in time. A spike train, then, 

resembles a set of points plotted along the continuous time axis. In statistics such data are 

known as temporal point processes. Likewise, events isolated in space are known as 

spatial point processes. For a review of statistical point process theory, including topics 

beyond the present scope, see (Cox and Isham 1980; Daley and Vere-Jones 2002). 
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 There are several ways to represent a point process: as a sequence of event times, 

waiting times, or counts. All three are equivalent, so we can flexibly move between them 

if one form lends itself to a particular application. Typically, spike trains are represented 

as event times during the recording stage and later converted to count sequences for 

analysis; this is the approach we use here. So-called “binless” representations have been 

used in the analysis of single neurons (Victor 2002) but become analytically intractable 

for more complex cases. Here we briefly describe the process for translating event times 

to counts, introducing notation that will be used along the way. 

 Suppose a spike train recorded over the time interval [0, 𝑇] consists of N spikes at 

times 𝑠1,. . . , 𝑠𝑁and let the function 𝑛(𝑡)give the total number of spikes observed up to 

time t. We first divide time into smaller windows of duration 𝛥, giving time points 𝑡𝑘 =

𝑘𝛥for 𝑘 = 0, . . . , 𝑇 𝛥⁄ . Now in discrete time, we define the sequence𝑑𝑛𝑘 = 𝑛(𝑡𝑘) −

𝑛(𝑡𝑘−1) 𝑘 ≥ 1, which counts the number of spikes in each time interval [𝑡𝑘−1, 𝑡𝑘]. If the 

bin size 𝛥is chosen to be sufficiently small, the count sequence 𝑑𝑛𝑘 will be binary: either 

1 if a spike occurs in bin k or 0 otherwise. 

 

2.1.2. Conditional intensity function. We analyze a point process through the 

conditional intensity function (CIF), which describes its history-dependent structure. As 

the name implies, the CIF is the conditional probability defined by the formula, 

𝜆(𝑡 | 𝐻𝑡) = 𝑙𝑖𝑚
𝛥→0

𝑃𝑟[𝑛(𝑡+𝛥)−𝑛(𝑡)=1 | 𝐻𝑡]

𝛥
(Equation 1.1) 
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where 𝐻𝑡 is the set of covariates that influence spiking, all observed up to time t (Daley 

and Vere-Jones, 2002; Truccolo et al., 2005). The goal of model selection, addressed in 

Chapters II and III, is to identify and interpret the set of covariates 𝐻𝑡 in light of the 

observed system. In neuroscience applications, 𝐻𝑡 typically involves a combination of (1) 

the previous history of spiking for the cell being modeled; (2) the previous history of 

spiking for additional cells; (3) inputs to the neuron due to external stimuli, and/or (4) 

oscillations in the extracellular voltage. In the subsequent chapters, we consider models 

with history-dependence involving factors (1) and (2), which mimic the biophysical 

features of intrinsic membrane channels and synaptic input, respectively. Frequently we 

refer to (1) as intrinsic effects and (2) as extrinsic effects. 

 

2.1.3. Generalized linear model. The point process GLM, as opposed to other point 

process models, assumes a particular form for the conditional intensity function. 

Specifically, it assumes the intensity can be written in the form, 

𝜆𝑘 = 𝑓(𝑋𝛽)  (Equation 1.2). 

The function f , called the inverse link, transforms a classical linear model (𝑋𝛽) into the 

distribution of the response variable (in this case, 𝜆𝑘). In the case where X is a stimulus 

and 𝛽 a stimulus filter, or tuning curve, Equation 1.2 has also been called a Linear-

Nonlinear Poisson (LNP) model (Simoncelli et al. 2004). A common choice of link, used 

throughout this dissertation, is the exponential link, 

𝜆𝑘 = 𝑒𝑥𝑝(𝑋𝛽) 
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or, equivalently, 

log  𝜆𝑘 = 𝑋𝛽 (Equation 1.3). 

For comparisons of different choices of link function, see (Paninski et al., 2004b; Ahrens 

et al., 2008; McFarland et al., 2013). 

 We estimate the model parameters 𝛽 by maximum-likelihood. That is, we fix 

𝑑𝑛𝑘to be an observed spike train and optimize the likelihood function 

𝐿 = exp  (∑ 𝑑𝑛𝑘

K

k=1

 log (𝜆𝑘Δ) − 𝜆𝑘𝛥) + 𝑜(𝛥𝑁) 

or, equivalently, the log-likelihood function 

log 𝐿 = ∑ 𝑑𝑛𝑘
K
k=1  log (𝜆𝑘Δ) − 𝜆𝑘𝛥 + 𝑜(𝛥𝑁) (Equation 1.4), 

where 𝑜(𝛥𝑁), higher-order terms introduced from approximating the limit in Equation 

1.1, are negligible (see Truccolo et al. 2005). The log-likelihood is convex as a function 

of 𝛽and therefore has no local maxima. As a result, max-likelihood solutions exist and 

can be estimated rapidly through gradient descent (McCullagh and Nelder 1989). 

 One way to mitigate overfitting, called regularization, is to add a penalty term to 

the log-likelihood before optimizing that will favor models with fewer parameters. For 

uses of regularization in fitting a point process GLM see (Gerwinn et al., 2010; Chen et 

al. 2009; Kelly et al. 2010). 

 

2.1.4. Goodness of fit. An important advantage of statistical models over biophysically 

motivated mathematical models is that principled methods exist to quantitatively assess 
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the statistical model’s goodness of fit. Several methods have been proposed to test 

goodness of fit for point process models. Perhaps the most well-known method is based 

on the time rescaling theorem (Brown et al. 2002), which rescales the waiting times and 

compares them with an exponential distribution. However, researchers have noted several 

issues with approaches based on time rescaling. One is that certain requisite assumptions 

break down for discrete data with high firing rates and short interspike-intervals 

(Haslinger et al., 2010). To deal with this, other goodness of fit tests based on thinning 

and complementing have been proposed (Gerhard and Gerstner 2010). An additional 

issue is that time rescaling assesses residual structure only within a single spike train. As 

a result, models could ignore important cross-population structure but still pass a 

goodness of fit test. Gerhard et al. (2011) address this issue by developing a multivariate 

version of the test that can be applied to an entire network. 

 

2.1.5. Relationship between point process GLM and the integrate-and-fire model 

neuron. Developed before Hodgkin and Huxley revealed the specific mechanisms of the 

action potential (Abbott 1999), the leaky integrate-and-fire (LIF) model is the most basic 

phenomenological model of a spiking neuron. The LIF model is defined as follows: 

𝜏�̇� = −𝑉 + 𝐼(𝑡); if 𝑉(𝑡) ≥ 1, 𝑉(𝑡 + 𝑑𝑡): = 0. 

In this model, the differential equation describes how the cell integrates time-varying 

current I(t) while it is opposed by a voltage “leak” -V that drives the voltage towards 

zero. If the input current exceeds the leak, the voltage eventually reaches one, and is then 
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reset to 0; at this time of reset, we say that the LIF model generates a “spike”. 

Additionally, several authors have extended the LIF model to incorporate broader spiking 

dynamics such as bursting and afterhyperpolarization (AHP) currents (Smith and 

Sherman 2002; Casti et al. 2002; Gerstner et al. 2014). 

 The LIF model and its extensions can all be completely specified using an 

appropriate GLM. Stevens and Zador (1996), for example, derive the mapping from a 

noisy LIF model to an equivalent Poisson GLM. From here, capturing additional LIF 

model dynamics with a GLM becomes relatively straightforward. For example, 

membrane currents map directly onto intrinsic effects terms in the GLM (Jolivet 2004; 

Jolivet and Gerstner 2004; Gerstner et al. 2014), while synaptic inputs to an LIF neuron 

map onto GLM extrinsic effects (Latimer et al. 2014). 

 

2.1.6. Applications of the point process modeling framework in other fields. 

Although here we focus on models of neural spiking, the point process modeling 

framework can be used to analyze other kinds of events as well. Indeed, point process 

models have been used to model diverse phenomena including military activity (Zammit-

Mangion et al. 2012), social network behavior (Zadeh and Sharda 2015), ambulance 

demand (Zhou et al. 2015b), and basketball shot quality (Franks et al. 2015). In the next 

section we briefly summarize some applications of the GLM framework to problems in 

neuroscience. 
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2.2. Applications of point process models in neuroscience 

 GLMs have been applied to study how neural systems encode stimuli as well as to 

decode their spike activity (Paninski et al., 2007). In encoding analyses, the GLM is used 

to describe how neurons – both single cells and networks – spike in response to stimuli. 

For example, Brown et al. (2001) estimated place fields of neurons in the rat 

hippocampus in vivo. To do so, they developed an adaptive estimation procedure, later 

extended by Eden et al. (2004) and Ergun et al. (2007), that successfully tracked 

receptive fields evolving over a span of minutes. Similarly, for single neurons the GLM 

has been used to characterize receptive fields in the retina (Pillow 2005), tuning curves 

related to movement direction and velocity in motor cortex (Paninski et al. 2004a; 

Truccolo et al. 2005), spectrotemporal receptive fields in the auditory midbrain 

(Calabrese et al. 2011), movement-induced dynamics in subcortical structures related to 

Parkinson's disease (Sarma et al. 2008; Deng et al., 2013), and task-related changes in 

spiking in macaque LIP (Latimer et al. 2015) and SEF (Ventura et al. 2002). The GLM 

has also been applied to model network activity. In particular, it has been used to describe 

sensory encoding by networks in the macaque retina (Pillow et al. 2008; Vidne et al. 

2012), cat motor cortex (Chen et al. 2009), and macaque V1 (Gerhard et al. 2011; Kelly 

and Kass 2012), and, in small cases, validated against simulated networks (Chornoboy et 

al., 1988; Okatan et al., 2005; Kim et al. 2011). 

 A dual application of the GLM is to decode the signal giving rise to a particular 

spike train. For example, place cell spiking has been used to decode animal location and 
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future navigational decisions (Huang et al. 2009; Deng et al. 2015). Similarly, spiking in 

monkey LIP has been used to predict a monkey's decision of where to saccade (Park et al. 

2014), and multi-unit activity from motor cortex to decode monkeys' hand movements 

(Lawhern et al. 2010). 

 In addition, the GLM framework has been developed to overcome known 

confounds present in the descriptive analysis of spike train data. For example, descriptive 

measures of spike-field coherence depend on firing rate (Lepage et al., 2011); this 

confound can be addressed through the development of a GLM that relates spiking to the 

inferred phase of a field (Lepage et al. 2013; Zhou et al. 2015a). Measures of correlation 

between spike trains also suffer from confounds (Moore et al. 1970; Cohen and Kohn 

2011), as we discuss in detail in Chapter II. 

 

3. Summary of Dissertation: Motivation and Approach 

 This dissertation utilizes a single framework, namely the point process GLM, to 

analyze spike trains in different in vivo, in vitro, and in silico scenarios. The three 

chapters describe these applications (or case studies) in modeling with the GLM. Where 

appropriate, we extend current methods and discuss practical advantages related to the 

GLM approach. In the first chapter, we apply the GLM to analyze spatiotemporal 

patterns during seizure. The second chapter uses this modeling framework to estimate a 

quantity known as enhancement or synergy. The third chapter applies the GLM to cluster 
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neurons by functional profile. Taken together, this work demonstrates the power and 

flexibility of modeling spike trains with a point process GLM. 

3.1. Chapter II.  Two categories of ictal discharges propagate with different 

spatiotemporal dynamics during human seizure 

 Chapter II applies the GLM framework to ictal discharges (IDs), a type of 

population spike data recorded in microelectrode arrays (MEA). These population-level 

voltage fluctuations travel across the MEA with rich spatiotemporal structure. By 

developing an algorithm that automatically extracts IDs from voltage data, we were able 

to identify for each seizure hundreds of IDs per electrode. We first analyzed the slope and 

amplitude of the discharges and found that they naturally follow a bimodal distribution. 

This suggests there are two types of discharge, so we clustered the IDs and assigned each 

one to its most likely type. We call these two types “large amplitude discharges” (LADs) 

and “small amplitude discharges” (SADs).  

 To explore the spatiotemporal structure of LADs and SADs, we utilized two 

methods: descriptive measures (namely auto- and cross-correlation) and the point process 

GLM. We find that both approaches reveal signatures of rhythmic bursting and 

directional wave propagation. The direction of wave propagation, whether estimated by 

correlation or GLM, was highly consistent across multiple seizures per patient. 

Correlations, however, are confounded and become spatially homogeneous at long lags, 

whereas GLM estimates show spatial specificity at long lags. We use the GLM 
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framework to show that the discharges evolve temporally as bursts, which become more 

rhythmic approaching seizure termination. Although both LADs and SADs propagate 

spatially as waves over the cortical surface, the large amplitude discharges propagate 

with more spatial organization than the smaller amplitude discharges. These 

spatiotemporal features remain consistent for each patient’s seizures. Such 

characterizations provide insight into the different types of spatiotemporal dynamics 

displayed by ictal discharges during human seizure at the sub-millimeter spatial scale, 

and provide clues to the mechanisms of human seizure and possible targets for improved 

surgical therapy. 

3.2. Chapter III.  Point process modeling reveals a unique type of enhancement during 

human seizures 

 In analyzing the GLMs discussed in Chapter II, we observed evidence of 

enhancement, a curious and little-reported statistical phenomenon. Typically, we expect 

that if two correlated variables are used to predict a modeled variable, then the two 

variables will be partially redundant in their explanation. In fact, some statistics textbooks 

state – incorrectly – that the variability explained by a second model covariate is always 

less than the information that same covariate provides alone. However, this is not 

necessarily true. There are a limited number of cases in social sciences, fewer still in 

neuroscience, where the converse occurs. In these situations, information behaves super-

linearly: two variables provide more information in a joint model than they provide in 
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total individually. In the statistical literature, this phenomenon has been variously called 

enhancement, synergy, and suppression. For clarity, we call this pheneomenon 

enhancement. In Chapter III, we plainly define and analyze enhancement in terms of 

GLM. 

 We first define an enhancement score for two covariates that registers negative in 

cases of redundancy (i.e., where two variables provide less information in a joint model 

than they provide in total individually) and positive in cases of enhancement. This score 

is based on the GLM deviance, a well-known measure that is straightforward to compute. 

We then propose a data boostrapping procedure by which confidence bounds for the 

score can be estimated. Using a simulated two-cell network, we validate this data 

bootstrapping procedure against parameter bootstrapping, or simulating more data. Over 

a range of network configurations leading to both redundancy and enhancement, we find 

that confidence intervals for data bootstrapping are highly consistent with parameter 

bootstrapping. This suggests that bootstrapping from a single block of data -  how the 

technique is applied in practice - gives similar confidence intervals as a very large data 

sample, or the theoretical distribution of scores.  

 We then proceed to estimate the enhancement score with confidence for two 

neural data sets. For the ictal discharges introduced in Chapter II, we find a consistent 

result for the entire population of patients and seizures: strong evidence of a positive 

score, consistent with enhancement between intrinsic and extrinsic effects. We continue 

and apply the same technique to analyze multi-unit spiking recorded in mouse auditory 
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and pre-frontal cortex. Assessing the enhancement score in these data, we find the 

opposite result: acores are predominantly negative, indicating redundancy between 

intrinsic and extrinsic effects. 

 We describe in this chapter a new method for evaluating enhancement using 

GLMs. Although enhancement is well-described in the classical linear modeling 

literature, much less is known for genearlized linear models. As a result, the classical 

case offers some insight into enhancements; nevertheless, the full implications of 

enhancement – for seizure in particular and neural systems in general – remains an active 

research area to be explored. We conclude by interpreting these results in light of the 

underlying neural networks, particularly for seizure. 

3.3.  Chapter IV.  Point process modeling reveals a hierarchy of functional cell types 

based on self-history dependence 

 Identifying the various types of neurons is a critical problem in neuroscience. 

Increasingly, cells can be biologically classified using genetic assays; however the 

functional consequences of neuronal biology remains incompletely understood. Some 

overlap between the schemes has been observed. For instance, genetically-identified 

excitatory principal neurons are often modeled as regular-spiking (RS) and genetically-

identified parvalbumin-positive (PV+) interneurons as fast-spiking (FS) cells. In this 

chapter, we describe a procedure to extend such labeling by clustering neurons into 
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functional cell types using the point process GLM. Our approach complements biological 

classification schemes by describing neurons purely in terms of their spike outputs. 

 We apply the clustering procedure to two sets of spike trains collected from 

neurons in vitro. The first data set consists of PV+ and non-PV+ inhibitory interneurons 

in the mouse medial entorhinal cortex (MEC). The second data set, from the publicly 

available Allen Cell Types Database, consists of ten cell types including both excitatory 

and inhibitory neurons. After fitting GLMs to the cells' spike trains, we dimensionally-

reduce the model estimates in various ways, including principal component analysis 

(PCA) and k-means clustering, and compare their performance. We find that the range of 

GLM intrinsic effects is effectively low-dimensional; that is, for both data sets the 

intrinsic effects cluster into a small number of types. We find notable overlap between 

functional types assigned from the GLM estimates and neurons' genetic lineage. In the 

MEC interneurons, we find that clusters that reliably separate PV+ and non-PV+ cells. In 

the Allen Cell Types data, we find that the two largest clusters correspond closely to  

excitatory and inhibitory cells. Furthermore, the clustering also hints at sub-types within 

and across the classical divisions. These techniques provide a powerful method to 

establish taxonomy of functional cell types across cortex that complements our 

understanding of biological cell types. 

3.4. Chapter V: Conclusion 



16 

 

 

 We conclude by summarizing the main research results, discussing the 

implications for the broader scientific community, and proposing future directions of 

research. 
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CHAPTER II. TWO CATEGORIES OF ICTAL DISCHARGES PROPAGATE 

WITH DIFFERENT SPATIOTEMPORAL DYNAMICS DURING HUMAN 

SEIZURE 

1. Introduction 

 Epilepsy, one of the most common neurological problems, is a devastating 

disease, impacting over five million people in the United States alone. Although epilepsy 

is an ancient disease, observed for thousands of years (Foote Smith and Bayne 1991; 

Ozer 1991), many aspects of this disease remain poorly understood (Lado and Moshé 

2008; Frei et al. 2010; Jiruska et al. 2013; Krook-Magnuson and Soltesz 2015). To 

completely understand and treat epilepsy remains an active research challenge that 

benefits from numerous approaches including experimental (Wagner et al. 2015; Paz et 

al. 2013), computational (Traub et al.,  2005; Lytton 2008; Destexhe 1998; Fröhlich et al., 

2010), and clinical (Rummel et al. 2013; Blumenfeld et al. 2009). 

 The most prominent characteristic of epilepsy is the repeated, spontaneous 

occurrence of seizures. Although the electrographic components of a seizure are varied, 

one of the most common features consists of brief (5-20 ms), sharp (at least 10 standard 

deviations / sec) changes in voltage. Voltage discharges in epilepsy can be divided into 

three types: interictal, pre-ictal, and ictal; and can manifest over large volumes, even 

brain wide (Stufflebeam et al. 2011; Lüttjohann et al., 2014; Sabolek et al. 2012).  

Interictal discharges - which occur between seizures - are useful in diagnosing epilepsy, 
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although the relationships between interictal discharges and seizures are not completely 

understood (Staley, Hellier, and Dudek 2005). Interictal discharges have been associated 

with the development of cognitive deficits and memory impairment (Kleen et al. 2013; 

Gelinas et al. 2016), and proposed as useful for targeting the epileptogenic zone (Alarcon 

et al. 1997). During an interictal discharge, it is thought that local cortical neurons 

generate action potentials due to a synchronous, paroxysmal membrane depolarization 

(Prince and Connors 1986; Dichter and Spencer 1969), although the mechanisms by 

which interictal discharges initiate and spread is not yet completely defined (Sabolek et 

al. 2012). Pre-ictal discharges - which occur immediately before seizure onset - have 

been found in many brain areas (Bartolomei et al. 2004; Huberfeld et al. 2011) and 

correlated with increased glial density (Spencer et al. 1999). A recent analysis of human 

tissue slices from patients with mesial temporal lobe epilepsy further distinguishes these 

two classes of discharges - pre-ictal and interictal - which differ in amplitude (pre-ictal is 

larger) and the cellular networks that support the discharges (Huberfeld et al. 2011). How 

these interictal and pre-ictal discharges organize and spread in the cortical network - and 

relate to ictal discharges - remains incompletely understood. Improving this 

understanding is the primary goal of this manuscript. 

 Recently, microelectrode arrays (MEAs) - implanted in the superficial layers of 

human cortex - have provided an unprecedented view of human brain activity at high 

spatial (< 0.5 mm) and temporal (e.g., 30,000 Hz) resolution. These data have revealed 
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fine-scale phenomena such as microseizures (Schevon et al. 2008), and insights into the 

activity of individual neurons (Truccolo et al. 2011) and multi-unit activity during seizure 

(Schevon et al. 2012). Although aspects of these data remain controversial (e.g., the 

isolation of individual units (Merricks et al. 2015); the appearance of an ictal wavefront 

(Wagner et al. 2015)) a common theme has begun to emerge: at the sub-millimeter spatial 

scale, human seizure activity exhibits a complex yet organized spatiotemporal structure. 

 In this manuscript, we analyze the spatiotemporal organization of ictal discharges 

observed at the sub-millimeter spatial scale in four patients. Consistent with recent in 

vitro observations, we show that these discharges naturally divide into two groups with 

distinct electrophysiological features. Analysis of the spatiotemporal dynamics of these 

two discharge groups, using both descriptive methods and statistical modeling, shows 

that – despite their different electrophysiological features – both groups exhibit similar, 

rhythmic temporal organization, which manifests as bursts consisting of doublet and 

triplet sequences of discharges approaching seizure termination. Consistent with this 

similarity in temporal organization, both discharge groups propagate in similar spatial 

directions. However, the spatial organization of this propagation is higher for the larger 

amplitude discharges, compared to the smaller amplitude discharges. These analyses 

reveal both similarities and distinctions between the spatiotemporal dynamics of the two 

groups of ictal discharges, provide insights into the possible mechanisms that support 

these discharges, and suggest refined targets for surgical intervention. 
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2. Methods 

2.1. Patients and recordings 

 Four patients with medically intractable focal epilepsy underwent clinically 

indicated intracranial cortical recordings using grid electrodes for epilepsy monitoring 

(see Table 1). Clinical electrode implantation, positioning, duration of recordings and 

medication schedules were based purely on clinical need as judged by an independent 

team of physicians. The patients were implanted with a 10 x 10 (4 mm x 4 mm) 

microelectrode array (MEA; Blackrock Microsystems, Utah) in a neocortical area 

expected to be resected with high probability. This research probe consisted of 96 

recording platinum-tipped silicon probes, with a length of either 1-mm (Patient D) or 1.5-

mm (Patients A-C), corresponding to neocortical layer III as confirmed by histology after 

resection. Signals from the MEA were acquired continuously at 30 kHz per channel. The 

reference electrode was either subdural or epidural, chosen dynamically based on 

recording quality. 

 Seizure onset and end times were determined by an experienced encephalographer 

through inspection of clinical voltage recordings, referral to the clinical report of the 

invasive electroencephalogram and clinical manifestations recorded on video. The 

number of seizures varied across the patients. Owing to operational issues, not all of the 

seizures were recorded or provided data with a high signal-to noise ratio. We selected 11 

seizures from the four patients. Seizure onsets were detected 2-3 cm away from the 
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research MEA, based on the clinical voltage electrodes. These recordings were therefore 

outside the seizure onset zone. 

Table II.1. Patients with implanted MEA.  TG: Temporal Gyrus. 

Patient # 

Seizures 

Age: 

Onset 

Age: 

Surgery 

Sex Hand MEA Placement Distance from 

seizure onset 

A 3 10 32 M L Superior TG 3 cm 

B 3 -- 45 M R Middle TG 2 cm 

C 2 14 25 F L Middle TG 3 cm 

D 3 15 21 M R Middle TG 2 cm 

 

 These data have been previously used in other studies. Patients A and D 

correspond to LFP #1 and #2 in (Kramer et al. 2012).  Patient D corresponds to Patient B 

in (Truccolo et al. 2011). Patients A-D correspond to patients (2,1,3,4) in study (Wagner 

et al. 2015); detailed clinical information for each patient may be found in reference 

(Wagner et al. 2015). 

 This research was approved by local Institutional Review Boards at Massachusetts 

General Hospital/Brigham and Women's Hospitals (Partners Human Research 

Committee) and at Boston University according to National Institutes of Health 

guidelines. 



22 

 

2.2. Ictal discharge identification and clustering 

 Ictal discharges (IDs) are defined as large amplitude, brief, seizure-related 

fluctuations in brain voltage. To identify IDs quickly and consistently, we implemented 

the following automated detection procedure. First, we excluded electrodes with 

excessive noise (average autocorrelation from 0-2 ms < 0.985). For most patients, there 

were 2-4 excluded channels; in one case (Patient D), there were 11 excluded channels. 

We note that we only analyzed the interior 8 x 8 sub-grid of the MEA, so that each 

electrode possessed neighbors in all directions. We then bandpass filtered the voltage 

data (1-20 Hz, linear-phase FIR filter, order 30, zero-phase filtering) and z-scored the 

result for each electrode over the entire duration of the seizure. 

 To extract the IDs, we detected extrema in the filtered and z-scored voltage 

activity. Conceptually, an ID occurs at a voltage extremum, where the change in voltage 

over time - or the slope - reaches zero; near the extremum, the slope changes sign 

between (large) negative and positive values. In practice, we computed the slope over 

non-overlapping 20 ms windows. We then found consecutive windows where the slope 

changed from a large negative value to a large positive values; we required the change in 

z-score to exceed 10 per second in each direction. The local minimum over this 40 ms 

interval was defined as the time of an ictal discharge. We found that this automatic 

identification process was consistent with visual inspection and identification of IDs by 
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an experienced electroencephaographer (Sydney S. Cash), although much faster 

(automated detection times of ~3 s per channel versus ~1 hour per channel manually).  

 A key challenge of this automated procedure is tuning the sensitivity of ID 

detections. In comparing window sizes, we found that slope is largely stable as the 

window size varies from 15-30 ms. Furthermore, we compared different choices of slope 

threshold (5-50 standard deviations per sec). We found that a threshold of 5 standard 

deviations per second resulted in many false positive detections, whereas most false 

positives vanished at a threshold of 10 standard deviations. Larger choices (> 30 standard 

deviations) reduced the number of true positives. We found that for some channels no 

choice of threshold produced a consistent detection of discharges; these channels were 

excluded from analysis (minimum of 4, maximum of 28, mean of 12.8 electrodes 

excluded). The average and standard deviation of the total number of electrodes analyzed 

for all patients and seizures is shown in Table II.2. 

Table II.2. Total counts of identified ictal discharges (IDs), large amplitude discharges (LADs), and 

small amplitude discharges (SADs). Because electrode number and seizure duration varied between 

seizures (top two rows), we normalize counts of IDs, LADs, and SADs per electrode and per second. The 

mean (first column) and standard deviation (second column) are indicated for each measure. 

Total counts (N=11 seizures) Mean Standard Deviation 

Number of electrodes 45.18 14.18 

Seizure duration (sec) 73.73 18.76 



24 

 

Total counts (N=11 seizures) Mean Standard Deviation 

IDs per electrode 679.53 230.88 

LADs per electrode 289.58 72.3 

SADs per electrode 389.95 172.74 

IDs per electrode per sec 8.92 2.3 

LADs per electrode per sec 3.88 0.98 

SADs per electrode per sec 5.04 1.59 

 

 We recorded each detected IDs' amplitude and left-hand slope. For each seizure, 

we clustered the set of IDs by estimating a multivariate Gaussian mixture model with two 

clusters, and assigned each ID to its most likely cluster. These two steps utilized the 

MATLAB functions fitgmdist.m and cluster.m, respectively (Mathworks, Natick, MA). 

We found that the clustering algorithm failed to converge for some patients and seizure 

when using a choice of 3 or 4 clusters. Using a choice of two clusters, the clustering 

algorithm converged for all eleven seizures, suggesting this is a natural number of ID 

types for these data. We label each discharge as “small amplitude discharge” (SAD) or 

“large amplitude discharge” (LAD), which denotes one feature of its associated cluster 

(the amplitude). 
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Figure II.1. Ictal discharges propagate in waves with multi-faceted structure. 

(A) Example seizure with two categories of ictal discharges marked (black and green o's). Six time points 

are highlighted for further visualization below. (B) Detailed visualization of the brain voltage at the times 

shown in (A). Each colored grid illustrates the voltage across the microelectrode array at a moment in time, 

with IDs indicated as circles. Panels show voltages in three channels over a four second interval 

surrounding the indicated moment. (C) Example distribution of ictal discharge shapes. Shape is quantified 

by discharge slope (left) and amplitude (right). Empirical distributions (blue) of the shape show bimodal 

composition. Estimating the underlying mixture of the distributions (black and green) permits classification 

of each discharge as large or small amplitude. 
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2.3. Calculation of speed 

 We approximated the propagation speed of IDs in two steps. First, we identified 

spatial waves: rapid, spatially-continuous sequences of IDs. We defined a spatial wave as 

multiple discharges that (1) contain no pause greater than 2 ms; (2) propagate between 

spatially adjacent electrodes (namely, from one electrode to its eight nearest neighbors); 

(3) include at least 10 discharges total; and (4) persist for at least 3 ms from first to final 

discharge. Note that the third criterion is intentionally chosen to be low, leading to a high 

discovery rate; false positives are reduced by the fourth criterion. A high sensitivity is 

important for SAD waves especially, since these discharges tend to be smaller in 

amplitude. Finally, to avoid assigning a discharge to multiple waves, we combined any 

sequences with intersecting IDs. Example spatial waves are shown in Figure II.1B. 

 For each spatial wave, we estimated its speed as 𝑑 𝑡⁄  where 𝑑 is the straight-line 

distance between the first and last electrode in the wave, and 𝑡 the time elapsed from first 

to last discharge. Table II.3 characterizes the spatial waves using several statistics, 

including the speed. 

Table II.3. Features of spatial waves for LADs and SADs. The mean (first column) and standard 

deviation (second column) are indicated for each measure and both discharge types. 

Totals (N=11 seizures) Mean Standard Deviation 

LADs   



27 

 

Totals (N=11 seizures) Mean Standard Deviation 

Number of spatial waves per second 4.9 1.3 

Spatial wave speed (mm / s) 278 131 

Spatial wave duration (ms) 8.6 4.3 

Electrodes per spatial wave 39 26 

SADs   

Number of spatial waves per second 3.8 2.7 

Spatial wave speed (mm / sec) 311 165 

Spatial wave duration (ms) 6.0 2.3 

Electrodes per spatial wave 30.6 21.0 

 

2.4. Point process analysis 

 After identifying the discharges and summarizing their basic features, we analyze 

these point process sequences in two ways (Truccolo et al. 2005): (1) By computing auto- 

and cross-correlations across the channels, and (2) By estimating statistical models of 

within- and between-channel interactions. Here we define the mathematical notation and 

formulas used in the analyses applied here. 
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2.4.1. Correlation analysis. The sample correlation between channels i and j at lag K is, 

𝜌𝑖,𝑗(𝐾) =
1

𝑇
∑(𝑑𝑛𝑖(𝑘) − 𝑑�́�𝑖)(𝑑𝑛𝑗(𝑘 + 𝐾) − 𝑑�́�𝑗)

𝑇−𝐾

𝑘=1

 

where T is the total duration of the recording, 𝑑𝑛𝑖(𝑘) is the number of spikes at time 

index k of channel i, and 𝑑�́�𝑖 is the average firing rate at channel i. When i = j, this 

equation defines the autocorrelation; otherwise, this equation defines the cross-

correlation. Peaks in the cross-correlation suggest physical relationships (Nowak et al. 

1999; Brockwell and Davis 2002; Nowak and Bullier 2000). In the case of IDs, peaks in 

cross-correlation may be interpreted as excitatory functional connectivity between 

recording sites (Moore, 1970; Ostojic et al., 2009). Troughs, similarly, may be interpreted 

as inhibitory functional connectivity. 

2.4.2. Point process generalized linear model. Like correlation analysis, the point 

process model quantifies the interactions between binary time series. While correlations 

summarize pairwise interactions, modeling can flexibly estimate higher-order 

interactions; auxiliary variables, which can confound correlations, are easily incorporated 

into a model. A point process model is defined by its conditional intensity function (CIF). 

The CIF is a vector that reflects the probability of events. Integrating the CIF over time 

gives the expected number of events over an interval. Following (Truccolo et al. 2005), 

we use the conditional intensity model: 
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log 𝜆𝑘 = 𝛽0 + ∑ 𝛽𝑘~𝑑𝑛𝑖,𝑘−𝑘~

𝑄

𝑘~=1

+ ∑ ∑ 𝛾𝑐,𝑘~𝑑𝑛𝑐,𝑘−𝑘~

𝑅

𝑘~=1𝑐∈𝐶𝑖

 

Here 𝑒𝑥𝑝𝛽0 is the baseline discharge rate; ∑ 𝛽𝑘~𝑑𝑛𝑖,𝑘−𝑘~
𝑄
𝑘~=1  is the self-history dependence, 

i.e. how the recent past of channel i affects its current discharge odds; and 

∑ ∑ 𝛾𝑐,𝑘~𝑑𝑛𝑐,𝑘−𝑘~
𝑅
𝑘~=1𝑐∈𝐶𝑖

 is the ensemble-history dependence, which depends on the history 

of electrodes in 𝐶𝑖, channel i's four nearest neighbors (see Figure II.2B). Throughout we 

label the self-history dependence “intrinsic effects” and the ensemble-history dependence 

“extrinsic effects.” These terms emphasize that intrinsic effects are factors from the same 

channel i, while extrinsic effects are due to external factors outside of channel i. Note 

that, in these sums, the intrinsic effects persist for Q time steps, the extrinsic effects for R 

time steps. 

 We utilize splines to parameterize the model's effects, which reduces the number 

of parameters to be estimated and enforces smoothness.  The expression for the 

conditional intensity model becomes: 

log 𝜆𝑘 = 𝛽0 + ∑ 𝛽𝑘~𝐵𝑘~(𝑑𝑛𝑖)

𝑄~

𝑘~=1

+ ∑ ∑ 𝛾𝑐,𝑘~𝐺𝑘~(𝑑𝑛𝑐)

𝑅~

𝑘~=1𝑐∈𝐶𝑖

 

The effects ∑ 𝛽𝑘~𝐵𝑘~(𝑑𝑛𝑖)
𝑄~

𝑘~=1 and ∑ ∑ 𝛾𝑐,𝑘~𝐺𝑘~(𝑑𝑛𝑐)𝑅~
𝑘~=1𝑐∈𝐶𝑖

 are now sums over spline basis 

functions. Weights 𝛽𝑘~and  𝛾𝑐,𝑘~ are then estimated from the data. Because the splines can 
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represent complicated functions with a small set of basis functions, the total number of 

parameters is substantially reduced. Specifically, here we reduce intrinsic effects from 

10,000 to 13 parameters, and we reduced extrinsic effects from 800 to 16. In total there 

are 78 (1+13+4*16) parameters in the model. 

 Both correlations and models were estimated over 30 s moving windows (29 s 

overlap). For models we estimated parameters via an iteratively reweighted least squares 

algorithm (i.e. Newton-Raphson method), implemented in MATLAB as glmfit.m  

(McCullagh and Nelder 1989). All models were tested for goodness-of-fit using the 

procedure described in (Brown et al. 2002). Briefly, for each model we computed a 

Kolmogorov-Smirnov (KS) statistic. This KS statistic was tested against computed 

confidence bounds, and models with significantly high KS statistics (i.e. poor scores) 

were rejected. For the data analyzed here, only a small percentage of models were 

rejected: 2.5% and 1.2% of LAD and SAD models, respectively. To further mitigate 

uncertainty, for all visualizations of model effects (Figure II.3A-C, Figure II.4A-C, 

Figure II.5A-E) we also mask effects that are not significant at a level of 𝛼= 0.05. That is, 

for each model we first compute confidence bounds associated with the effects curves. 

We then identify lags where the confidence intervals fail to exclude zero and set the 

model effects at those lags equal to zero. Hence all remaining effects are verified as 

statistically significant, which emphasizes the models' most salient features. 
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2.5. Directional analysis 

 For each seizure, we computed cross-correlations and extrinsic effects estimates 

between every MEA electrode and its four nearest neighbors. These measures tended to 

vary between neighbors, consistent with the notion that IDs propagate in preferred 

directions.  To further investigate the directionality, we implemented a two-step 

approach: (1) First, we defined the composite direction: a vector that summarizes the 

preferred direction for a set of cross-correlations or spatial effects. (2) Then we grouped 

all composite directions for each patient and summarized their circular distributions. 

2.5.1. Composite direction. If a set of cross-correlations or spatial effects shows an 

imbalance across neighbors, it indicates discharge propagation is more likely in certain 

directions than others (see example in Figure II.2B). We therefore developed the 

composite direction: a simple measure to summarize directional preference in a set of 

cross-correlations or extrinsic effects. For a set of cross-correlations or extrinsic effects at 

each of a channel's four neighbors (in the cardinal directions, 𝑐 = {𝑁, 𝑆, 𝐸, 𝑊}), we 

average over lags spanning 1-10 ms and then use these four quantities to compute a 

vector sum. The resulting vector points in the direction IDs are most likely to propagate 

according to the cross-correlation or extrinsic effects. 

2.5.2. Circular statistics. Having computed composite directions for all electrodes and 

time intervals in a given patient, we analyze their distribution. Assuming composite 

directions follow a von Mises distribution, we compute max-likelihood estimates, 
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including confidence intervals, for the mean direction 𝜃0 and concentration parameter 𝜅. 

Confidence intervals for the mean direction appear as red arcs in Figure II.3D, II.4D, and 

II.5F. Confidence intervals for the concentration parameters are listed in Table II.4 and 

Table II.5. We also perform a Rayleigh test on the composite directions, which 

determines whether a set of angles is uniformly distributed across the circle. The 

alternative is that angles cluster about a preferred direction.  Estimation and inference are 

implemented via the CircStat toolbox for MATLAB and verified using the R package 

'circular' (Berens, 2009). 

 In addition to approximating the propagation directions, we compared the 

directions for different measures and types of discharge. Specifically, we computed, for 

each channel and time window, (1) The difference in propagation angle for LADs 

estimated by cross-correlation versus by modeling, and (2) The difference in propagation 

angle for LADs versus SADs, both estimated using modeling. Similar angular directions 

computed using (1) different measures or (2) different discharge types produce angular 

differences near zero, while unrelated angular directions produce angular differences 

different from zero. We analyzed the angular differences in the same way as overall 

direction: the set of angular differences for each patient were used to estimate parameters 

for a von Mises distribution. Mean and concentration parameter estimates, including 

confidence intervals, appear in Table II.4 and Table II.5. 
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Figure II.2. Overview of analysis approach for estimation of spatiotemporal structure from point 

process data. 

(A) Sequences of IDs in space and time are analyzed for within-channel (intrinsic or local circuit, purple) 

and between-channel (extrinsic or ensemble, green) dynamics using descriptive methods (auto- and cross-

correlation) and statistical modeling. (B) Example of directional propagation. In the statistical model, IDs 

in four neighboring channels (green) modulate the discharge probability at channel i (purple). Each 

neighbor has a unique modulation profile (blue). In this example, IDs from the north and east neighbors are 

more influential than the south and west neighbors. The large arrow indicates the most likely direction of 

discharge propagation. 
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3. Results 

 We analyze local field potentials (LFP) recorded during seizures by 

microelectrode arrays (MEAs) implanted in four patients with focal epilepsy. All eleven 

seizures are spike-and-wave seizures that evolve with a similar electrographic pattern: 

fast low voltage activity at seizure onset followed by a transition to rhythmic bursting 

(Perucca, Dubeau, and Gotman 2014). We show an example of a representative seizure in 

Figure II.1. Visual inspection reveals that rapid voltage fluctuations (marked by green 

and black o’s in Figure II.1A,B) occur throughout the seizure. These events are a 

characteristic signature (i.e., the “spike”) of the spike-and-wave seizure. We refer to these 

rapid voltage fluctuations as ictal discharges (IDs). We note that the IDs of interest here 

occur during seizure, and are temporally distinct from pre-ictal (Huberfeld et al. 2011) or 

interictal (Staley, Hellier, and Dudek 2005) discharges.  

 At a finer timescale, visual inspection reveals two properties of the IDs. First, the 

temporal features of the IDs (e.g., their rate of appearance or interval between IDs) 

appear to evolve during seizure. In some cases, the rate appears to decrease and become 

more rhythmic as seizures evolve (examples in Figure II.1A,B). Second, IDs appear 

organized in space. Visualization of the LFP at fixed moments in time reveals that IDs 

tend to appear over extended spatial intervals of the MEA, not at isolated spatial locations 

or randomly across the MEA (examples in Figure II.1B). 
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 Visual inspection of the example LFP trace also suggests two different categories 

of IDs; namely, smaller amplitude IDs with smoother temporal profiles (green circles in 

Figure II.1A,B), and larger amplitude IDs with steeper temporal profiles (black circles in 

Figure II.1A,B). This distinction appears throughout the seizure, and becomes especially 

clear late in seizure, during which smaller amplitude IDs tend to follow larger amplitude 

IDs. To explore this distinction in more detail, we determine the amplitude and left-hand 

slope (i.e., steepness) associated with each ID. Analysis of the distributions of these 

quantities reveals multiple peaks, consistent with the notion of different ID categories 

(example for one patient and seizure in Figure II.1C). For each patient and seizure, we 

estimate two underlying distributions using a Gaussian mixture model (see Methods). 

From the estimated distributions, we assign each ID to its most likely group: either “large 

amplitude discharge” (LAD) or “small amplitude discharge” (SAD). Here we use the 

electrographic convention that discharges are negative deflections, thus units of 

amplitude and slope are in negative standard deviations. We note that inclusion of a third 

cluster in the analysis does not alter the results or provide additional meaningful 

categorization (not shown). We therefore conclude that two types of ictal discharges 

appear, distinguished by two measured features: voltage amplitude and slope. We note 

that the automated procedure to identify IDs allows for rapid and consistent cultivation of 

ID data from multiple electrodes and seizures, thereby permitting a high-throughput 
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analysis. Because we observe hundreds of IDs per seizure (see Table II.2), such 

automated analysis is necessary. 

 After extracting individual IDs, we next identified sequences of IDs that occurred 

across at least ten spatially-adjacent electrodes within a brief time interval (see Methods). 

We refer to such sequences as spatial waves. Visual inspection suggests that spatial 

waves are prominent and appear to propagate in a specific direction (examples in Figure 

II.1B). In Table II.3 we summarize features of the spatial waves computed for the LADs 

and SADs over the MEA. Overall, the spatial waves of LADs and SADs show 

comparable speeds, durations, and spatial extents; however, we note that SAD spatial 

waves are slightly faster, shorter, and involve fewer electrodes. Additionally, we observe 

fewer total SAD spatial waves. These results are consistent with the notion that both 

LADs and SADs possess similar spatial wave organization, although this organization is 

weaker for SADs than LADs. 

 To analyze further these IDs, we employed two analysis approaches: descriptive 

statistics and statistical modeling. Both approaches characterize the spatiotemporal 

structure of IDs by assessing the frequency of events (1) within channels and (2) across 

channels, as illustrated in Figure II.2A. We refer to the former (purple in Figure II.2A) as 

“intrinsic” effects, which represent the autocorrelation or self-history-dependence of the 

IDs within a channel. We refer to the latter (green in Figure II.2A) as “extrinsic” effects, 
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which represent the cross-correlation or ensemble-history dependence of the IDs between 

channels (Truccolo et al. 2005). 

 Visual inspection of the spatiotemporal organization of the IDs suggests that these 

discharges tend to propagate in preferred directions (examples in Figure II.1B; see 

[[Movie 1 and Movie 2]]). To assess this organization and compare the waves' directions, 

we developed a measure of directionality that can be estimated from the descriptive 

statistics and statistical models. We illustrate the application of this measure in Figure 

II.2B. Here, for a chosen interval of time (30 s) and a chosen electrode, the spatial effects 

are estimated (e.g., using the cross-correlations) between the chosen electrode and each 

of its four neighbors. These spatial effects (blue traces in Figure II.2B) are then combined 

to compute a vector sum (see Methods). The resulting vector indicates the direction of 

influence between the chosen electrode and its neighbors. In this example, chosen from 

the data shown in Figure II.1, visual inspection suggests IDs propagate southwest across 

this electrode at this time (see Figure II.1B and [[Movie 1 and Movie 2]]). Because the 

north and east neighbors’ spatial effects dominate the south and west in Figure II.2B, the 

estimated directionality (black arrow) points southwest, as expected. In what follows, we 

examine for each patient and seizure how the directionality evolves across the MEA as 

the seizure progresses. 

 Having defined two categories of IDs, and introduced the analysis approach, we 

now examine the spatiotemporal evolution of the IDs in eleven seizures. We begin with a 
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descriptive statistical analysis of the large amplitude discharges (LADs, Figure II.3). The 

descriptive statistical analysis consists of two measures: (1) the autocorrelations, which 

measure the structure of LADs within a channel, and (2) the cross-correlations, which 

measure the structure of LADs between channels. We show in Figure II.3 these 

correlations for a single seizure (Figure II.3A-B) and across all eleven seizures (Figure 

II.3C-D). Correlations are computed over a moving window (size 30 s, horizontal axis) 

for each electrode and then averaged across electrodes. Horizontal bands of red (blue) 

indicate likely (unlikely) inter-discharge intervals that persist in time.  
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Figure II.3. Correlation analyses reveal multiple time scales and directionality in ID dynamics but 

suffer from confounding effects. 

(A,B) Example (A) autocorrelations and (B) cross-correlations (vertical axis is lag time, correlation value 

in color and bar) over a moving window (horizontal axis) of LADs for a single seizure. In (B), each of the 

four neighboring electrodes (white arrows) are shown together with the autocorrelation over the same lag 

range. (C) Average windowed autocorrelation for all patients and seizures. (D) Rose plots indicating 

directionality values for each patient. Lines (red) indicate estimated mean direction with 95% confidence 

intervals for each patient. 

 The example in Figure II.3A shows two prominent features of rhythmic activity. 

First, an interval of negative correlation (blue band) occurs at lags 0-50 ms throughout 
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seizure. This feature suggests a period in which subsequent LADs are unlikely 

immediately following a LAD. We may interpret this effect as an ID “refractory period”, 

although we note that this refractory period refers to the LADs, and is not related to the 

refractory period of an individual neuron. Second, intervals of positive correlation (red 

bands) occur at lags of 50-100 ms, near 500 ms, and near 1000 ms. These features 

suggest an increase of rhythmic bursting (i.e., intervals of rapid LADs separated by 0.5 s) 

approaching seizure termination. We note that this transition to bursting behavior is 

consistent with the example progression shown in Figure II.1B. The smallest time scale, 

50-100 ms, is the intra-burst interval (i.e., the time between IDs within a burst), and the 

second time scale, 500 ms, is the inter-burst interval (i.e., the time between bursts). The 

1000 ms time scale results from three sequential bursts separated by ~500 ms delays. 

These features, consistent with bursting activity, also appear in the population average 

results (Figure II.3C). 

 To assess the spatial structure of the LADs, we computed the cross-correlations 

between electrodes in the MEA. The example in Figure II.3B shows the average cross-

correlations, here averaged across all electrodes (lags on vertical axis) over a moving 

window (horizontal axis), with correlation values indicated in color. We note in this 

example a large positive correlation at short lags (less than 10 ms) whose strength varies 

in the four directions throughout the seizure. This feature is consistent with the rapid 

propagation of LADs between neighboring electrodes; an electrode is more likely to 
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produce a LAD when one of its neighbors produces a LAD in the recent past. We also 

note that, in this example, the strength of the correlation varies depending upon the 

direction. Here the IDs in a given electrode tend to be more correlated with their neighbor 

to the east. This spatial organization is consistent with a planar wave that propagates from 

right to left across the MEA. 

 To assess the directionality of this propagation, we combined the cross-

correlations in all four directions to compute a composite direction vector (see Methods 

and Figure II.2B). We show in Figure II.3D histograms and mean values of the angles of 

these direction vectors, grouped by patient. We find for all patients that the the null 

hypothesis of the Rayleigh test is rejected (p<1e-6). We conclude that, using the cross-

correlation measure, LADs do not propagate uniformly but instead travel in a preferred 

direction that varies by patient. 

 We note that this correlation analysis also reveals an important confound: 

prominent features in the autocorrelation impact the cross correlation. This effect is 

clearly illustrated in Figure II.3B. We note that the strong cross correlation at lags 50-100 

ms, apparent in each direction, matches the strong auto-correlations observed at the same 

lags (compare the top-right panel in Figure II.3B to the other panels in Figure II.3B). 

Although correlation structure at lags beyond 10 ms may identify additional spatial 

relationships in the data, these relationships are confounded by the rhythmic ID activity at 
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each electrode. As we show below, a statistical modeling approach mitigates this 

confounding effect. 

 Having described the spatiotemporal evolution of LADs using correlations, we 

now characterize their structure with a statistical model (more specifically, a point 

process generalized linear model; see Methods). Figure II.4 illustrates a set of models fit 

over the same LAD data as the correlations shown in Figure II.3. Here within-channel 

dynamics are characterized by “intrinsic effects” rather than autocorrelations, and 

between-channel dynamics, earlier measured by cross-correlations, are now characterized 

by “extrinsic effects.”  

 Model estimates for a single seizure are shown in Figure II.4A-B. Here the 

intrinsic and extrinsic effects are estimated simultaneously over windows that span the 

duration of the seizure (horizontal axis). Color indicates how LAD probability fluctuates 

(percent change) at specific lag times post-discharge (vertical axis). Plots are averages 

over the electrode array of all effects that reached statistical significance (i.e., p < 0.05, 

see Methods). Green indicates a value of 1, and suggests ID probability does not change 

significantly. Red (blue) indicates significantly enhanced (depressed) ID probability. 
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Figure II.4. Modeling analyses reveal multiple time scales and directionality in ID dynamics without 

the confounds of descriptive analyses. 

(A,B) Example (A) intrinsic effects and (B) extrinsic effects (vertical axis is lag time, effect value in color 

bar) over a moving window (horizontal axis) of LADs for a single seizure. In (B), each of the four 

neighboring electrodes (white arrows) are shown together with the intrinsic effects over the same lag range 

(C) Average windowed intrinsic effects for all patients and seizures. (D) Rose plots indicating relative 

values of extrinsic effects in each direction. Lines (red) indicate estimated mean direction with 95% 

confidence intervals for each patient. All probability images are masked to show only statistically 

significant effects (p<0.05). 

 Similar to the autocorrelation results, variations in the intrinsic effects (Figure 

II.4A) indicate the evolution of rhythmic activity during seizure. In this example, we 

observe a decreased probability of LADs occurring 100-400 ms after a previous LAD 



44 

 

(i.e., the probability of inter-discharge intervals between 100-400 ms is reduced, blue in 

Figure II.4A). We note that this reduction becomes more pronounced approaching seizure 

termination. In addition, we observe an increase in the probability of inter-discharge 

intervals near 50 ms and between 500-750 ms; the latter increase becomes more 

pronounced approaching seizure termination (orange in Figure II.4A). Together these 

results suggest that LADs tend to exhibit bursts, consisting of 2-3 LADs each separated 

by 50 ms, with 500-750 ms between burst onsets. The properties of these bursts evolve 

during seizure, such that the interval between bursts becomes more pronounced (blue 

region 100-400 ms). We also note that the 50 ms peak becomes reduced near seizure 

termination, suggesting the number of LADs per burst eventually decreases to one, 

consistent with visual inspection (Figure II.1B), as sequences of LADs become replaced 

by sequences of LADs and SADs. These signatures of rhythmic activity appear 

consistently across the population of patients and seizures (Figure II.4C). 

 An example of the extrinsic effect estimates for this patient and seizure are shown 

in Figure II.4B. These estimates, like the cross-correlation, measure between-channel 

structure. Unlike the two types of correlation, which are estimated separately and 

dominated by common signals (see Figure II.3B), the intrinsic and extrinsic effects are fit 

simultaneously in the statistical modeling framework. The example in Figure II.4B shows 

the extrinsic effects averaged across all electrodes (lags on vertical axis) over a moving 

window (horizontal axis), with color indicating the relative change in LAD probability. 
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We find, similar to the cross-correlation results, an increase in LAD probability at short 

lags (less than 10 ms), which persists in different neighbors throughout the seizure; again, 

this feature is consistent with the rapid propagation of LADs between neighboring 

electrodes. Unlike the correlation results, which are dominated by a common increase 

between 20-100 ms (Figure II.3B), we find here much more variability between 

directions in the extrinsic effects at intermediate lags (~20-100 ms). This variability was 

hidden in the cross correlation analysis due to the confounding effect of rhythmic ID 

activity at each electrode. The statistical model - which simultaneously estimates the 

intrinsic and extrinsic effects - mitigates this confound. The model results reveal less 

organized spatial influences at intermediate lags (~20-100 ms), compared to short lags. 

 We also assess whether the statistical models suggest directionality in LAD 

propagation. To do so we compute a measure of directionality similar to that used for 

cross-correlations, and examine the distributions of these directions. Namely, for each 

model we combine the spatial effects at short lags (< 10 ms) in all four directions and 

compute a composite direction vector (see Methods and Figure II.2B). The angles of the 

composite directions are summarized for all 11 seizures in Figure II.4D. The histograms 

indicate the distributions of angles for all channels and time windows, grouped by 

patient. Red arcs indicate the estimated mean direction with 95% confidence intervals.  

 To measure IDs' directionality - or lack thereof - deduced from the extrinsic 

effects, we again performed a Rayleigh test on the composite directions (see Methods). 
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For all four patients we rejected the null hypothesis that directions uniformly cover the 

circle (p<1e-6). Additionally, we computed max-likelihood estimates of the concentration 

parameter for each patient's composite directions (Table II.4). For three of the four 

patients, the concentration parameters are near or above 1, which indicates their 

composite directions tend to align. We conclude from these results that LAD 

directionality at short timescales (less than 10 ms) concentrates in a specific direction and 

persists during seizure and across the MEA for three of the four patients. 

 Visual inspection of Figures II.3D and 4D suggests that the mean directionality is 

similar whether estimated by correlation (Figure II.3D) or statistical modeling (Figure 

II.4D). To investigate this further, for each electrode we compute the angular difference 

between the directionality estimated from the two approaches at each moment in time 

(see Methods). If the directionality estimates are similar for the two approaches, then we 

expect this difference to be near zero. Indeed, we find that the mean angular difference is 

small - less than 0.25 radians in magnitude - in three of the four patients (Table II.4, 

middle column). We note that, for the fourth patient (Patient D) the confidence intervals 

for the angular difference are large and contain 0. These results confirm our visual 

inspection; the directionalities estimated through the two approaches are qualitatively 

similar. However, we note that the angular differences for two patients (Patients A and B) 

have confidence intervals that do not include zero, and that possess large concentration 
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parameters (Table II.4, right column). These results suggest that, though small, 

significant angular discrepancies do exist between the two analysis approaches. 

Table II.4. Summary of distributions of LAD directionality. Results in the first column are derived from 

the statistical modeling approach, while results in the second and third column compare the statistical 

modeling and descriptive approach. Listed are 95% confidence intervals for each estimate. 

Patient  Concentration 

parameter of LAD 

directionality 

Angular difference between 

LAD estimates from 

correlation and modeling 

Concentration parameter of 

angular difference between 

LAD estimates from 

correlation and modeling  

A (0.97, 1.07)  (-0.17, -0.05)  (0.73, 0.82) 

B (2.42, 2.62)  (-0.24, -0.19)  (1.8, 1.93) 

C (0.91, 0.99)  (-0.01, 0.15)  (0.39, 0.47) 

D (0.11, 0.25)  (-1.67, 0.69)  (0.01, 0.14) 

  

 We conclude this analysis by applying the same modeling approach to analyze the 

spatiotemporal structure of small amplitude discharges (SADs). To start, we show in 

Figures II.5A, 5B, and 5E examples of the model estimates for a single seizure. In this 

case, there are two types of intrinsic effects (i.e., within-channel dynamics) that represent 

the influence of either a previous SAD (Figure II.5A) or a previous LAD (Figure II.5B) 

on the probability of a subsequent SAD. In this example, both types of intrinsic effects 
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suggest that IDs occur in rhythmic bursts. Visual inspection of Figure II.5B suggests that 

LADs consistently precede SADs by 50-100 ms, and that this effect becomes more 

prominent approaching seizure termination; notice the interval of increased probability 

(dark red) at these lags in Figure II.5B. We observe a similar - although weaker effect - of 

a preceding SAD in Figure II.5A. Combined these intrinsic effects are consistent with a 

three-discharge LAD-SAD-SAD burst, with intra-burst interval of 50-100 ms. 

Approaching seizure termination, we observe an additional interval of increased SAD 

probability between lags 500-1000 ms following both a LAD and SAD. Notice that the 

effect of the preceding LAD is both stronger and earlier (i.e., at shorter lag) than the 

effect of the preceding SAD; these effects are again consistent with a LAD-SAD-SAD 

burst, with inter-burst interval of approximately 500 ms. This pattern of LAD/SAD 

dynamics remains evident in the population averages (Figure II.5C, II.5D). While the 

time between bursts is less consistent (i.e. lighter color) across patients, the tendency of 

SADs to follow LADs by 50-100 ms, particularly approaching seizure termination, 

remains strong. 
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Figure II.5. Modeling analysis of small amplitude discharges (SADs) reveals effects that depend on 

both SADs and large amplitude discharges (LADs). 

(A, B) Example intrinsic effects (lag on vertical axis, relative probability in color) over a moving window 

(horizontal axis) for (A) SAD-to-SADs and (B) LAD-to-SADs for a single seizure. (C, D) Average intrinsic 
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effects over a moving window for (C) SAD-to-SADs and (D) LAD-to-SADs for all eleven seizures. (E) 

Example extrinsic effects (lag on vertical axis, relative probability in color) for each of the four neighboring 

electrodes (white arrow) for SADs for a single seizure. (F) Rose plots indicating relative values of SAD-to-

SAD extrinsic effects in each direction. Lines (red) indicate estimated mean direction with 95% confidence 

intervals for each patient. All probability images are masked to show only statistically significant effects 

(p<0.05). 

 To examine the spatial influence of neighboring SADs, we show an example of 

the statistical model extrinsic effects in Figure II.5E. We note that, in this model, the 

extrinsic effects characterize the influence of SADs at four neighboring electrodes on the 

probability of a SAD at each center electrode (see Methods, and Figure II.2). In this 

example, we find the most prominent effect at short lags (1-10 ms), consistent with the 

rapid spatial propagation of SADs. At longer lags, from 10-100 ms, the spatial effects 

become less uniform and more difficult to characterize. To assess the directionality of 

SADs for all patients and seizure, we again compute a composite direction vector from 

each model’s extrinsic effects (see Methods). Histograms of the direction vectors - 

computed for all time windows, MEA electrodes, and seizures - are shown for each 

patient in Figure II.5F.  Like the population results for LADs (Figure II.4D), we find here 

that SADs tend to propagate in consistent directions for each patient.  

 Figure II.4D and Figure II.5F suggest that the mean angular directions of LADs 

and SADs are consistent. However, visual inspection of these figures reveals that the 

standard error of the angular mean (red arcs in Figures II.4D and 5F) tends to be larger 

for SADs compared to LADs, consistent with the directionality of SAD propagation 

being more varied. To test this hypothesis, we compared the concentration parameters for 
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the two sets of directions (see Methods). We find that the concentration parameters for 

SADs are significantly less than the concentration parameters of LADs in three of four 

patients (compare first and second columns of Table II.5). For the remaining case, Patient 

D, the confidence intervals for LAD and SAD concentration parameter overlap, but only 

slightly. The distribution of angular differences between LAD and SAD directions is near 

zero (third column of Table II.5) and tends to be concentrated (fourth column of Table 

II.5), although less concentrated than the LADs alone in three of four patients (compare 

the first and last columns of Table II.5). We conclude that SADs do exhibit spatial 

organization similar to LADs, but less of it, and that LADs and SADs tend to propagate 

in similar directions. 

Table II.5. Summary of differences in directionality between large and small amplitude discharges. 

Estimates of the concentration parameters of LADs (first column) and SADs (second column), as well as 

their mean angular differences (third column) and the concentration parameter for these angular differences 

(fourth column). Each entry indicates 95% confidence intervals, see Methods. The first column of Table 

II.5 is identical to Table II.4, but repeated here for completeness. 

Patient  Concentration 

parameter of 

composite direction  

(LAD model) 

Concentration 

parameter of 

composite direction  

(SAD model) 

Mean angle 

difference 

(LAD - SAD) 

Concentration of 

angular 

difference  

(LAD - SAD) 

A (0.97, 1.07) (0.47, 0.56) (-0.27, -0.13) (0.57, 0.66) 

B (2.42, 2.62) (0.4, 0.47) (0.17, 0.34) (0.38, 0.45) 
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Patient  Concentration 

parameter of 

composite direction  

(LAD model) 

Concentration 

parameter of 

composite direction  

(SAD model) 

Mean angle 

difference 

(LAD - SAD) 

Concentration of 

angular 

difference  

(LAD - SAD) 

C (0.91, 0.99) (0.41, 0.48) (-0.12, 0.06) (0.36, 0.44) 

D (0.11, 0.25) (0, 0.13) (-0.07, 0.44) (0.21, 0.35) 

 

4. Discussion 

 In this chapter, we analyzed ictal discharges (IDs) from microelectrode array 

recordings performed in four patients during seizure. We showed that IDs can be 

separated into two distinct categories by their shape: large amplitude discharges (LADs) 

and small amplitude discharges (SADs). Correlation and modeling analysis of LADs and 

SADs showed that both exhibit rhythmic bursts and traveling waves, which become more 

prominent approaching seizure termination. We showed that cross correlation analyses 

are confounded by autocorrelation effects, and addressed this confound in a statistical 

modeling framework, in which rhythmic and spatial effects were simultaneously and 

separately estimated. Finally, testing for differences in the propagation direction of LADs 

and SADs revealed that both travel in similar directions, although SADs tended to do so 

with less consistency. Together these results provide the first patient-specific statistical 
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characterization of the spatiotemporal dynamics of ictal discharges at the sub-millimeter 

spatial scale. 

 Voltage discharges in human epilepsy have been extensively studied in human 

and animal models. Interictal discharges (IIDs) - which occur between seizures - are 

common in epilepsy, although the relationships between interictal discharges and seizures 

are not completely understood (Staley et al., 2005). Like the ictal discharges studied here, 

IIDs have been shown to propagate over cortex (Emerson et al. 1995), with substantial 

variability in spatial propagation between sequential IIDs (Sabolek et al. 2012). While the 

clinical significance of IIDs is unclear, it has been hypothesized that regions where the 

earliest discharges occur are located in the epileptogenic zone and behave as pacemakers 

that drive propagation; targeting resections to brain regions that lead sequences of IIDs 

correlates with successful surgical outcome (Alarcon et al. 1997). Here, the 

microelectrode arrays were not placed in the epileptogenic zone, so that the traveling 

waves of IDs - observed during seizure - propagated from another brain region. Unlike 

IIDs, the LADs analyzed here displayed consistent directions of propagation within a 

seizure, and between a patient’s seizures. This suggests that the direction of LAD 

propagation may help target the brain region from which the earliest IDs emanate. When 

the direction of LAD propagation is consistent, following the propagation backwards 

through established neural pathways may help identify the source, which could serve as a 
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target for resection. When LAD propagation is unclear or originates from multiple 

regions, we expect surgical outcome will be worse (Alarcon et al. 1997). 

 Recent work suggests rhythmic trains of IDs follow passage of an ictal wavefront 

(Smith et al. 2016). These IDs are proposed to propagate as traveling waves away from 

the ictal wavefront, and are associated with transient bursts of multiunit firing and high 

gamma field activity (Smith et al. 2016). Similar to the results in (Smith et al. 2016), we 

find that IDs - both LADs and SADs - propagate across the MEA as traveling waves with 

a preferred direction for each patient, and that intervals between discharges or bursts of 

discharges increase approaching seizure termination (i.e., the activity “slows”). Unlike 

(Smith et al. 2016), we find that IDs tend to become more regular approaching seizure 

termination, and we do not find strong evidence for two, opposing directions of 

propagation. This difference may result from the distinction here between two ID 

categories; late in seizure, the LADs may represent traveling waves that originate from 

the ictal wavefront, while the SADs may originate more locally and therefore exhibit 

more heterogeneity not directly yoked to the ictal wavefront. Combining the LADs and 

SADs may then reduce the regularity of IDs approaching seizure termination. In this 

scenario, we expect the ictal wavefront migrates in a constant direction away from the 

MEA, so that IDs continue to propagate from the wavefront to the multielectrode array at 

the same orientation throughout the late seizure interval. 
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 How seizures terminate remains unknown (Lado and Moshé 2008). Here we 

observed increased temporal organization of IDs approaching seizure termination. This is 

consistent with the observation of increased coupling approaching seizure termination, 

common in invasive brain voltage recordings (Kramer and Cash 2012; Schindler et al. 

2007; Topolnik et al., 2003; Schindler et al. 2008; Schiff et al. 2005) . More specifically, 

we observed the emergence of discharge patterns approaching seizure termination that 

commonly consisted of LAD-SAD doublets, and LAD-SAD-SAD triplets. The 

mechanisms of the LADs and SADs observed here are not understood. We speculate that 

long range synaptic connections support LAD propagation from a possibly distant source, 

while mechanisms that support SADs may sustain more local propagation. For example, 

an ID emanating from a distant cortical source may follow excitatory synaptic pathways 

across the cortex, eventually reaching the observed cortical patch and propagating across 

this patch as a LAD. This LAD is then followed by one or two SADs, whose propagation 

over the cortical patch is sculpted by local mechanisms (e.g., local connectivity structure 

or local interneuron networks (Sabolek et al. 2012)). In this scenario, the seizure 

terminates when the wave source (or perhaps the ictal wavefront [Smith et al. 2016]) 

dissipates and ceases emitting traveling waves of IDs. 

 These proposed mechanisms for LADs and SADs are consistent with a recent 

analysis of human tissue slices from patients with mesial temporal lobe epilepsy 

(Huberfeld et al. 2011). In that work, two classes of discharges were identified, pre-ictal 
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and interictal, which occurred contemporaneously (Huberfeld et al. 2011). The pre-ictal 

discharges possessed larger amplitudes, like the LADs studied here, depended on 

glutamatergic signaling and were preceded by pyramidal cell firing. The interictal 

discharges had smaller amplitudes, like the SADs studied here, depended on both 

glutamatergic and depolarizing GABAergic signaling, and were preceded by interneuron 

firing. In addition, GABAergic networks have been shown as major contributors to the 

variance in discharge propagation patterns (Sabolek et al. 2012), consistent with the 

increased variability of SAD propagation compared to LAD propagation shown here. 

Although the mechanisms of IDs remain unknown, this work is consistent with existing 

observations that LADs and SADs utilize different neural networks. 

 We applied two types of analyses - descriptive analysis and statistical modeling - 

to these data. Both approaches revealed ID dynamics with similar spatiotemporal features 

(e.g., time scale and direction of propagation). However, the cross-correlation exhibited a 

clear confound: the appearance of autocorrelation (i.e., self-history) effects. Analysis of 

coupling in point process data often exhibits these types of confounds. For example, the 

spike-field coherence depends on the firing rate, such that lower firing rates reduce the 

coherence (Lepage et al., 2011). Similarly, correlations between spike trains depend on 

many factors, including the firing rate, which can affect and bias estimates (Cohen and 

Kohn 2011; de la Rocha et al. 2007; Dorn and Ringach 2003). Procedures to mitigate 

these confounds include corrections to descriptive measures (Aoi et al. 2015; Cohen and 



57 

 

Kohn 2011) and the development of multivariate point process models (Granger 1969, 

Lepage et al. 2013). Point process models have been used to characterize action 

potentials from individual neurons in a variety of contexts (Truccolo et al. 2005; Huang 

et al. 2009; Pillow et al. 2008; Latimer et al. 2015; Gerstner). Here we developed a point 

process modeling framework to analyze cortical voltage events generated by neural 

populations. In doing so, we utilized a predictor unique to these spatiotemporal data: the 

past discharge activity of spatial neighbors. This type of ensemble predictor is rarely 

available for individual neurons, for which the identification of a neighbor depends on 

complex - and typically unobserved - synaptic connectivity. 

 The results presented in this chapter suggest three areas for future investigation. 

First, additional research may identify an optimal method of discharge identification that 

depends on additional features developed for individual patients and electrodes. Second, 

different categories of discharge - beyond the two identified here - may exist. Finally, we 

estimated point process models for a particular model class that includes the effects of 

self-history and ensemble-history. These models were effective in capturing the 

spatiotemporal patterns observed in the data; more that 97% of the models passed a 

standard goodness-of-fit test. However, further model development may result in more 

accurate or simpler (lower-dimensional) model formulations. This may provide additional 

insight into the spatiotemporal dynamics and physiology of IDs. 
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 How ictal discharges initiate and spread over human cortex is not understood. In 

this chapter, we developed a quantitate analysis of the spatiotemporal dynamics of human 

IDs at the sub-millimeter scale. We showed that two categories of IDs exist with similar 

temporal organization, but different spatial organization: large amplitude discharges 

propagate with more spatial organization, while smaller amplitude discharges propagate 

with less spatial organization. Understanding the mechanisms that support - and disrupt - 

these different discharge dynamics may help target interventions tailored to each 

discharge type.
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CHAPTER III. POINT PROCESS MODELING REVEALS A UNIQUE TYPE OF 

ENHANCEMENT DURING HUMAN SEIZURES 

1. Introduction 

 Characterizing how a network's information is distributed among multiple spike 

trains is a key problem in neuroscience. Sensory systems, for example, have been 

described in terms of how well they retain information from stimuli (Rolls 2003; Quian 

Quiroga and Panzeri 2009; Dimitrov et al., 2011). However, details of the encoding and 

how information flows among spike trains and beyond early sensory areas remain 

incompletely understood. 

 In analyzing the GLMs discussed in Chapter II, we observed evidence of 

enhancement, a curious and little-reported statistical phenomenon related to information 

theory. Typically, we expect that if two correlated variables are used to predict a modeled 

variable, then the two variables will be at least partially redundant in their explanation. In 

fact, some statistics textbooks state – incorrectly – that the variability explained by a 

second model covariate is always less than the information that same covariate provides 

alone (Currie and Korabinski 1984). However, this is not necessarily true. There are a 

limited number of cases in social sciences, fewer still in neuroscience, where the 

converse occurs (Gat and Tishby 1998; Schneidman et al., 2003; Narayanan et al., 2005). 

In these situations, information behaves super-linearly: two variables provide more 

information in a joint model than they provide in total individually. In the statistical 
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literature, this phenomenon has been variously called enhancement (Friedman and Wall 

2005), synergy (Hamilton 1988), and suppression (Lynn 2003). Following Friedman and 

Wall (2005) we use “enhancement” to mean super-linear information between model 

factors and “suppression” referring to changes in model effect sizes. 

 In this chapter, we define an enhancement score for a set of GLMs similar to the 

mutual information computed in previous neuroscience applications. We demonstrate 

how to estimate the score, including confidence bounds, by computing it for simulated 

data. Our results show that the estimated confidence is reliable across several networks. 

Applying this technique to in vivo neural data, we find that enhancement is ubiquitous 

during human seizures, while redundancy tends to be the norm in mouse auditory 

networks. We conclude by discussing the physiological implications of enhancement and 

redundancy, particularly for seizure. 

2. Methods 

 We analyze enhancement, or lack thereof, in three neural data sets: simulated 

spiking from a simple two-cell network, population-level discharges recorded during 

human seizure, and multi-unit activity recorded from mouse auditory and prefrontal 

cortex. 
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2.1. Data 

 Here we describe the procedures undertaken to simulate and record spike train 

data. All analysis and visualization was performed using custom MATLAB software 

(Mathworks; Natick, MA). 

 

2.1.1. Simulated two-cell network. The first data set we analyzed was simulated from a 

two-cell spiking network, shown schematically in Figure III.2A. Cell X and Cell Y are 

described by two point process generalized linear models (GLM) where the quantities 

𝜆𝑋,𝑘and 𝜆𝑌,𝑘give the expected number of spikes in time bin k for the respective cells. 

These spike probabilities vary depending on intrinsic effects (self-history-dependence, 

filled circles in Figure III.2A) and extrinsic effects (ensemble-history-dependence, open 

circles in Figure II.2A). Such effects are similar to the ones used in previous functional 

network simulations (Okatan et al., 2005; Kim et al. 2011) and discussed in greater detail 

in Chapter II Methods 2.4.2. 

 Mathematically, these spiking models can be described by the conditional 

intensity functions (CIF) 

log 𝜆𝑋,𝑘 = 𝑤𝑋,0 − 𝑤1𝜙(𝑘 − 𝑘𝑋
∗ ) + 𝑤2𝜙(𝑘 − 𝑘𝑌

∗ ) 

log 𝜆𝑌,𝑘 = 𝑤𝑌,0 − 𝑤3𝜙(𝑘 − 𝑘𝑌
∗ ) + 𝑤4𝜙(𝑘 − 𝑘𝑋

∗ ) 

The terms 𝑤𝑋,0 and 𝑤𝑌,0are baseline spike rates; they are set to log 0.02 and log 0.01, 

which correspond to rates of 20 and 10 Hz, respectively. Terms 𝑤1𝜙(𝑘 − 𝑘𝑋
∗ ) and 
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𝑤3𝜙(𝑘 − 𝑘𝑌
∗ ) are intrinsic effects for Cells X and Y, respectively; terms 𝑤2𝜙(𝑘 − 𝑘𝑌

∗ ) 

and 𝑤4𝜙(𝑘 − 𝑘𝑋
∗ ) are extrinsic effects describing the drive from Y to X and X to Y, 

respectively. 𝑘𝑋
∗  and 𝑘𝑌

∗  represent the times that Cells X and Y last spiked. Each cell is 

affected by both spike times; the function 𝜙describes the time course of the effects. For 

simplicity, we set all effects to have the same time course 𝜙(𝜏) = exp(−
𝜏

50
), plotted in 

Figure III.2.A.  

 To explore the system's behavior, we fixed w1 and w3 equal to one and let w2 and 

w4 vary from -5 to 5. For every (w2, 𝑤4) pair, we generated 1000 spike trains for the 

network, each of duration 20 seconds. From each pair of spike trains, we then estimated 

GLM parameters and enhancement scores using the procedures outlined in Chapter II, 

Methods 2.4.2. Median enhancement scores across the 1000 trials are summarized in 

Figure III.2.B over the range of w2 and w4 values. We define the enhancement score in 

Section 2.2.4 after we have introduced the data and form of the statistical model. 

 

2.1.2. Human seizure networks. We also considered data from microelectrode array 

(MEA) recordings of eleven human seizures. For each seizure, we considered a set of 

ictal discharges, rapid voltage fluctuations with large amplitude. These discharges are 

identical to those analyzed in detail in Chapter II. Patient history, recording protocols, 

and discharge definitions are described in detail in Methods II.2.1. For each seizure, we 
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selected a 30-second window near the seizure's temporal midpoint. We analyzed the point 

process data for this window across all MEA electrodes, fitting 388 models in total. 

 

2.1.3. Mouse cortical networks. The third data set we considered was multi-unit activity 

recorded from mouse cortex. All procedures involving animals were approved by the 

Boston University Institutional Animal Care and Use Committee (IACUC). These data 

comprise a subset of the data analyzed in (James 2016).  

 Ten ChAT-ChR2 transgenic mice were used, each three to six months old at the 

time of recording. Mice were surgically implanted with a head plate custom head plate 

designed to allow access to the prefrontal cortex (PFC) and auditory cortex (AC). Upon 

recovering from surgery, mice were habituated to a sound attenuation chamber where 

recordings took place. For recording, two small craniomities were performed over PFC 

and AC and linear electrode probes were inserted into both areas. The electrode arrays 

were (1) a 16-contact linear probe with 100 um spacing between electrode contacts 

(Neuronexus, Ann Arbor, MI; model A1x16-10mm-100-177-A16) inserted into PFC and 

(2) a 32-channel probe with 4 shanks each 400 um apart and with 8 contacts spaced by 

100 um (Neuronexus, Ann Arbor, MI; model A4x8-5mm-100-400-177-A32) inserted 

into AC. To record spikes, signals were digitized at 24,414 Hz and bandpass filtered 

between 300-5000 Hz. Spikes were identified by threshold crossings, which were 

manually set at the beginning of each recording session. To identify individual neurons, 
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spike snippets were analyzed using Offline Sorter (Plexon Inc.; Dallas, TX) and manually 

clustered in principal component space. 

 Neural spiking was recorded during passive presentation of an auditory stimulus.  

Specifically, the stimulus was a 500 millisecond burst of white noise generated with a 

RZ2 Bioamp processor and RP2.1 real time processor (Tucker Davis Technologies) and 

digitized at a frequency of 48,828 Hz. Stimuli were presented to each mouse 100 times 

per recording block with an inter-trial interval of 10 seconds. Interspersed within the 

auditory stimulus trials are additional trials with optogenetic stimulation, however we do 

not consider these trials here. 

2.2. Point Process Modeling 

 The point process generalized linear model (GLM) is a powerful and flexible way 

to characterize neural spike data. In the present chapter, we measured mutual information 

between spike trains using the GLM to compute enhancement. Here we describe the 

specific GLMs estimated for the three neural data sets; we define the enhancement score 

and its calculation from the GLM in Section 2.2.4. Point process models are described in 

more detail in Chapter II and, for example, by Truccolo et al. (2005). In all of the 

subsections below, we assume that time is discretized into bins of equal size 𝛥  so that the 

k-th time point is 𝑡𝑘 : = 𝑘𝛥 and spikes are represented as binary time series 𝑑𝑛𝑖,𝑘equal to 

1 if a spike occurs in electrode channel i in the time interval [𝑡𝑘, 𝑡𝑘+1) and 0 otherwise. 
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For simulated spike trains and multi-unit activity from mouse cortex, we set 𝛥 = 1 𝑚𝑠; 

for ictal discharges, we set 𝛥 = 0.27 𝑚𝑠. 

2.2.1. GLM for simulated spikes. To analyze the spikes produced in the simulated 

network, we estimated parameters for the same conditional intensity that used to generate 

the data: 

𝑙𝑜𝑔𝜆𝑦,𝑘
^ = 𝑤𝑦,0^ − 𝑤3̂𝜙(𝑘 − 𝑘𝑦

∗ ) + 𝑤4̂𝜙(𝑘 − 𝑘𝑥
∗)(Equation 3.1) 

where 𝜆𝑦,𝑘
^ is the estimated CIF of cell y at time bin k, 𝑤𝑦,0^  is the estimated log baseline 

spike rate, 𝑤3̂ is the estimated weight of the self-history dependence (intrinsic effects), 

and 𝑤4̂ is the estimated log weight of the ensemble-history dependence (extrinsic effects). 

We note that we only estimate parameters for the simulated neuron Y, while we observe 

the spiking activity of simulated neurons X and Y. 

In this way, there is no misspecification between the GLM and the model that produces 

the data. Such a scenario is unlikely for in vivo data, but utilized here for simplicity and 

to clearly illustrate the enhancement phenomenon. 

 

2.2.2. GLM for ictal discharges. The model used for ictal discharges was the same 

GLM as described in Chapter II; we briefly review this model here. The spike probability 

in channel i is modeled as 

log 𝜆𝑘 = 𝛽0 + ∑ 𝛽𝑘~𝑑𝑛𝑖,𝑘−𝑘~

𝑄

𝑘~=1

+ ∑ ∑ 𝛾𝑐,𝑘~𝑑𝑛𝑐,𝑘−𝑘~

𝑅

𝑘~=1𝑐∈𝐶𝑖
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For this model exp 𝛽0  is the baseline discharge rate; ∑ 𝛽𝑘~𝑑𝑛𝑖,𝑘−𝑘~
𝑄
𝑘~=1  is the self-history 

dependence, i.e. how the recent past of channel i affects its current discharge odds; and 

∑ ∑ 𝛾𝑐,𝑘~𝑑𝑛𝑐,𝑘−𝑘~
𝑅
𝑘~=1𝑐∈𝐶𝑖

 is the ensemble-history dependence, which depends on the history 

of electrodes in 𝐶𝑖, channel i's four nearest neighbors (see Figure II.2B). Furthermore, we 

utilize splines to parameterize the model's effects, which reduces the number of 

parameters to be estimated and enforces smoothness.  The expression for the conditional 

intensity model becomes: 

log 𝜆𝑘 = 𝛽0 + ∑ 𝛽𝑘~𝐵𝑘~(𝑑𝑛𝑖)

𝑄~

𝑘~=1

+ ∑ ∑ 𝛾𝑐,𝑘~𝐺𝑘~(𝑑𝑛𝑐)

𝑅~

𝑘~=1𝑐∈𝐶𝑖

 

The effects ∑ 𝛽𝑘~𝐵𝑘~(𝑑𝑛𝑖)
𝑄~

𝑘~=1 and ∑ ∑ 𝛾𝑐,𝑘~𝐺𝑘~(𝑑𝑛𝑐)𝑅~
𝑘~=1𝑐∈𝐶𝑖

 are now sums over spline basis 

functions. Weights 𝛽𝑘~and  𝛾𝑐,𝑘~ are then estimated from the data. Because the splines can 

represent complicated functions with a small set of basis functions, the total number of 

parameters is substantially reduced. Specifically, here we reduce intrinsic effects from 

10,000 to 13 parameters, and we reduced extrinsic effects from 800 to 16. In total there 

are 78 (1+13+4*16) parameters in the model. 

2.2.3. GLM for multi-unit spiking in mouse auditory networks.  The GLM used for 

multi-unit spiking was similar to the one used for seizure, as defined in Section 2.2.3. The 

full model for channel i, before reducing dimensionality, was 
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log 𝜆𝑘 = 𝛽0 + ∑ 𝛽𝑘~𝑑𝑛𝑖,𝑘−𝑘~

𝑄

𝑘~=1

+ ∑ ∑ 𝛾𝑖,𝑘~ ∑ 𝑑𝑛𝑐,𝑘−𝑘~

𝑐∈𝐶𝑖

𝑅

𝑘~=1

2

𝑖=1

 

Here the intrinsic effects are the same as for the ID model. Extrinsic effects again sum the 

modulation from other spike trains; a notable difference, though, is that the extrinsic 

effects in this model sum spiking activity from all other neurons 𝐶𝑖across auditory cortex 

(i=1) and prefrontal cortex (i=2), not just a subset in adjacent electrodes. 

 Just as with the seizure GLM, we replace the full effects, which involve many 

parameters, with a spline-basis representation of the effects that reduces the 

dimensionality and imposes smoothness. The spline-based representation takes the form 

log 𝜆𝑘 = 𝛽0 + ∑ 𝛽𝑘~𝐵𝑘~(𝑑𝑛𝑖)
𝑄~

𝑘~=1 + ∑ ∑ 𝛾𝑖,𝑘~𝐺𝑘~(∑ 𝑑𝑛𝑐𝑐∈𝐶𝑖
)𝑅

𝑘~=1
2
𝑖=1 . 

This change reduces the intrinsic effects from 2,400 to 6 parameters and extrinsic effects 

from 720 parameters to 5. In total there are 17 (1+6+2*5) parameters in the model. 

 

2.2.4. Enhancement score. To measure enhancement, we first estimated the models 

described above for each type of data. Model parameters were estimated via an iteratively 

reweighted least squares algorithm (i.e. Newton-Raphson method), implemented in 

MATLAB as glmfit.m. For an estimated model, deviance was computed in the standard 

way as the Kullback-Liebler divergence (difference in log-likelihood) between the 

estimated model and the saturated model where each spike is described by a dedicated 
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parameter (McCullagh and Nelder 1989). Deviances were compared across the model 

hierarchy as summarized schematically in Figure III.1.  

 Let 𝛥0be the deviance of the null model with only one parameter; 𝛥1be the 

deviance of a model with intrinsic effects;𝛥2be the deviance of a model with extrinsic 

effects; and let𝛥3be the deviance of a joint model with both intrinsic and extrinsic effects. 

Then the quantity 𝛥0𝑥 = 𝛥0 − 𝛥𝑥 represents the information gain (i.e. reduction in 

deviance) associated with a particular model x = {1,2,3}. Other authors have measured 

enhancement, sometimes called synergy, to occur when the information gain from a pair 

of variables 𝛥03exceeds the sum of information gains they yield individually 𝛥01 +

𝛥02(Gawne and Richmond 1993; Gat and Tishby 1998; Optican et al., 1991; Nakahara 

and Amari 2002; Schneidman et al., 2003; Quinn et al. 2011).We adopt a similar 

definition. However, rather than measuring enhancement as the absolute difference 

between these two quantities, as in other cases, we normalize by the total information 

gain of the joint model. Therefore we define for the model hierarchy the enhancement 

score E: 

𝐸 = [𝛥03 − (𝛥01 + 𝛥02)] 𝛥03⁄ = 1 − (𝛥01 + 𝛥02) 𝛥03⁄ . 

The advantage of a normalized enhancement is that it is easier to compare across multiple 

models. Because deviance is easily computed even for more complicated GLMs, this 

enhancement score readily generalizes beyond the example models studied here. 
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2.2.5. Confidence intervals for the enhancement score. To compute confidence 

intervals for the enhancement score using a single fixed set of spike train data, we 

implement a resampling technique (Hastie, Tibshirani, and Friedman 2001; Sarma et al. 

2011). Consider the case of a single enhancement score where 𝑦  is the target spike train 

being modeled and 𝑋 is the design matrix of the joint model, both with 𝑇rows which 

correspond to the 𝑇 observations. To bootstrap more scores from the data, we 

implemented the following procedure: (1) Resample the rows of 𝑦 and 𝑋with 

replacement; (2) Fit a hierarchy of models from this new data sample; and (3) Compute 

the enhancement score. We repeated steps (1)-(3) from 100-1000 times per model, 

depending on the computational load required. For the seizure data, where the arrays are 

large and estimating a model hierarchy takes approximately 20 minutes, we performed 

100 iterations. For other data, where estimating a model hierarchy takes a matter of 

seconds, we were able to perform 1000 iterations without issue. Confidence intervals 

were then taken to be the 5th and 95th percentiles of the bootstrapped score distribution. 
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Figure III.1. Enhancement is measured by analyzing the model hierarchy. 

(A) Schematic of model hierarchy with redundancy. In this figure, the models progress from least 

information (the null model, left) to most informative (the joint model, right). Feature X1 or X2 improves 

the null model considerably, but each provides subsequently less improvement in higher-dimensional 

models. These improvements are indicated schematically by the length of the horizontal line associated 

with each model; 𝜟𝟎𝟏 is the information gain due to intrinsic effects alone, 𝜟𝟎𝟐 is the information gain due 

to extrinsic effects alone, 𝜟𝟎𝟑 is the information gain from intrinsic and extrinsic effects together. Similarly 

𝜟𝟏𝟑amd 𝜟𝟏𝟐 represent the information gain extrinsic effects provide over intrinsic effects alone, and vice 

versa. In this figure, purple indicates a change in information where intrinsic effects are added, and green 

indicates a change in information where extrinsic effects are added. (B) Model hierarchy with 

enhancement. Feature X1 or X2 improves the null model modestly. However, both X1 and X2 improve one 

another's models more so than their individual improvements of the null model. 
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3. Results 

 We analyzed the enhancement, or lack thereof, in three neural data sets. The first 

was simulated spiking from a simple two-cell network; the second was population-level 

spikes during human seizures; and the third was multi-unit activity from mouse auditory 

and prefrontal cortex. In all three cases, enhancement between intrinsic and extrinsic 

effects was estimated using a score derived from the GLM framework. Additionally, 

confidence intervals for the scores were computed using a data bootstrapping procedure 

(see Methods). Varying simulation parameters and computing the enhancement score, we 

found that the score is useful for assessing the model identifiability and that confidence 

intervals accurately reflected changes in the system dynamics. Finally, we applied the 

same enhancement analysis procedure to two cases of in vivo neural spiking. The first 

was ictal discharges observed during human seizure, where we found significant evidence 

of enhancement between intrinsic and extrinsic effects. The second was multi-unit 

activity in mouse auditory networks (auditory and prefrontal cortex) during passive 

listening, where we observed redundancy between the effects and, in a few cases, 

independence. 

 The first data set consisted of simulated data from a simple two cell network. This 

network has only six degrees of freedom and a fully known structure, which allows us to 

verify the accuracy of our methods and build intuition. The network is diagrammed in 

Figure III.2.A. In these statistical models of a neuron, spikes from Cells X and Y are 
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drawn from an inhomogeneous Poisson distribution. Cell X (Y) spikes at a baseline rate 

of 20 Hz (10 Hz).   

 Additionally, the cells' spike probabilities fluctuate according to two factors: 

intrinsic and extrinsic effects. Intrinsic effects depend on each cell's own spike history. 

These are represented in Figure III.2.A as inhibitory self-synapses (filled circles) with 

strengths w1 and w3. When Cell X spikes, its spike probability is multiplied by a factor 

exp(−𝑤1) one millisecond later. As shown in the time course of the simulated intrinsic 

effects (Figure III2.A, blue curve at left), this depression in spike probability persists for 

up to one second but rapidly decays. By 100 milliseconds post-spike, intrinsic effects 

depress the spike probability by a factor exp(−0.5𝑤1). In our case, for example, Cell X 

has a baseline spike probability of 0.02 spikes per bin and w1 equal to 1. When Cell X 

spikes, its spike probability reduces to approximately 0.007 spikes per bin at the next 

time step. But spike probability eventually rebounds to 0.012 per bin after 100 

milliseconds and 0.018 after 200 milliseconds. Cell Y follows similar dynamics with 

strength defined by w3, which is also set equal to 1.  
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Figure III.2. Enhancement depends on the type of system feedback. 
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(A) Schematic of the simulated network. Cells X and Y have baseline spike rates of 20 and 10 Hz, 

respectively. Spike probabilities are decreased by intrinsic effects (filled circles) producing refractory 

periods with strengths 𝐰𝟏 and 𝐰𝟑. Spike probabilities are also modulated by extrinsic effects (open circles) 

that mimic synaptic coupling. When the coupling strengths 𝐰𝟐 or 𝐰𝟒 is positive (negative), the drive excites 

(inhibits) spiking. Time courses of intrinsic and extrinsic effects are pictured; both rapidly decay after 200 

ms but persist for up to one second. (B) Enhancement scores along two-dimensions of parameter space. 

Colors depict median enhancement ratios over 1000 simulations (see Methods). If X sends inhibitory 

feedback in response to drive from Y (top left), then intrinsic effects and extrinsic effects become 

redundant. On the other hand, if the drives between X and Y match in sign (diagonal), then effects show 

enhancement. (C) Comparison of spiking for the three networks labelled in (B). Network N1 exhibits 

feedforward inhibition: Y excites X, which inhibits Y. Network N2 exhibits recurrent excitation or positive 

feedback: X and Y both excite each other, leading to frequent overlap in spiking. Because this network 

spikes so frequently, the example raster is shorter (1 second long) than the other rasters (5 seconds long). 

Network N3 exhibits mutual inhibition: X and Y inhibit each other, so that they tend to spike at different 

times. 

  Extrinsic effects, depicted as filled circles in Figure III.2.A, mimic the 

effects of synaptic coupling. In the statistical model, these terms allow Cell X's spike 

history to drive Cell Y's spike probability with strength w2, and vice versa with strength 

w4. Negative (positive) weights lead to statistical coupling that mimics inhibitory 

(excitatory) synaptic drive between neurons. Here we varied w2 and w4 from -5 to 5, 

spanning a range of inhibitory and excitatory values. The resulting levels of enhancement 

are shown in Figure III.2.B. In this figure, color depicts the enhancement score; cool 

colors indicate redundancy, while warm colors indicate enhancement. 

 We find that the level of enhancement depends critically on the signs of w2 and 

w4. This is evident from the warm/cool color patches in Figure III.2.B, which roughly 

divide the plane into four quadrants separated by the lines w2 = 0 and w4 = 0. However, 

unlike sign, the magnitudes of w2 and w4 have little influence on enhancement or 
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redundancy, as evidenced by the approximately constant enhancement score within each 

quadrant. 

 To further examine the simulation results depicted in Figure III.2.B, we divide the 

model state space into three representative networks N1-N3. These three networks 

(labelled in Figure III.2.B) have coupling terms with different signs; in N1 both coupling 

terms are negative, while in N2 and N3 the coupling terms have opposite sign. As a 

result, these combinations expresses different relationships of excitation and inhibition 

between cells. Their range of behaviors is illustrated by example spike trains in Figure 

III.2.C. 

 In the simulated example, we know the true values of the synaptic weights, and 

can examine the estimation procedure by comparing the estimated parameters to those 

true values. In Table III.1 we quantify the error in parameter estimation for networks N1, 

N2, and N3. We find that describing any of the three networks with only one type of 

effects (individual models) leads to bias in the parameter estimates (first two columns). 

This is expected, since a one-effect model incompletely describes the network generating 

the data. We will now interpret the various biases that occur in light of the network 

connectivity. 

 In the first type of network (N1), w2 is positive and w4 is negative. Classically, 

this would be described as feedforward inhibition or negative feedback network (Freund 

and Antal 1988; Li et al. 2014). In this configuration, Cell Y excites Cell X, which in turn 
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inhibits Cell Y. Example spiking rasters in Figure III.2.C illustrate this pattern: Each time 

Cell Y spikes, it triggers a burst of spikes in X, which immediately stop Y's spiking. This 

type of network leads to redundancy. Intuitively, the reason for this redundancy is that 

when Y excites X which inhibits Y, the net effect is that Y inhibits Y. This post-spike 

inhibition can be described equally well as self-inhibition (Y inhibits Y through intrinsic 

effects) or synaptic inhibition (X inhibits Y through extrinsic effects). Such an 

interpretation is supported by Table III.1, where the amount of inhibition is overestimated 

for individual models of intrinsic and extrinsic effects (row N1, first and second column).  

To see this, note that the parameter difference between the estimated and true values of 

w3 in this case is 3.166, meaning that the amount of self-inhibition is overestimated in 

the individual model. Similarly, the difference between estimated and true values of w4 is 

-0.244, indicating that the extrinsic effects are estimated to be even more inhibitory than 

they actually are. 

 In network N2, the synaptic weights are both positive. This could be described as 

recurrent excitation or positive feedback, where either cell can initiate a prolonged 

sequence of mutual spiking in the other. Such connectivity leads to intervals of rapid 

spiking. This is illustrated in Figure III.2.C. We note that, in this figure, the scale bar 

indicates 200 ms, compared to 1000 ms in the other example rasters. In this scenario, the 

spiking is much denser, as expected for this type of network configuration. Network N2 

also exhibits enhancement. Intuitively, the reason for this enhancement is that because 
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they covary but modulate spiking in opposite directions, intrinsic and extrinsic effects 

suppress one another's effects in an individual model. In a joint model, these covarying 

effects can be properly separated, as suggested by the third and fourth column of Table 

III.1. 

 Finally, in network N3, w2 and w4 are both negative. This is the most 

complicated case, which can be interpreted physically as a pair of mutually-coupled 

inhibitory cells. The negative synaptic weights cause each cell to inhibit the other, 

leading to indirect increases in spike probability. For example, if Cell Y spikes, Cell X is 

inhibited and becomes less likely to inhibit Cell Y; thus Y's future spike probability is 

increased relative to not spiking. We note that this configuration differs from the network 

in N2, where w2 and w4 are both positive. To see this, compare the example spike rasters 

in Figure III.2.C; in N1 the cells frequently spike together, whereas for N3 the cells tend 

to spike out-of-phase with one another. Like mutual excitation, mutual inhibition also 

leads to enhancement. Intuitively, the reason for this enhancement is similar to network 

N2. In a model without extrinsic effects, the inhibitory influence of X onto Y is 

misattributed to the self-history effects of Y. This misattribution suppresses the true 

intrinsic effects in Y; by including the positive impact of the extrinsic effect from X (due 

to release of inhibition from X on Y) in the modeled intrinsic effects of Y, we 

inaccurately estimate the inhibitory effect of the Y’s intrinsic effects. We interpret this 

misattribution as contributing “negative information” to our ability to predict the next 
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spike of Y. In a joint model that includes both intrinsic and extrinsic effects, this negative 

information is reduced. By modeling the extrinsic effects term from X, the estimated 

intrinsic effects in Y becomes more accurate – this term is no longer suppressed by the a 

net excitatory extrinsic effect. Therefore, including the extrinsic effects in the joint model 

increases the amount of correct information provided by the intrinsic effects term.  This is 

the essence of enhancement; adding a new term to a model increases the information of 

other terms. 

We note that self-inhibition is overestimated in the individual model (Table III.1, first 

column).  

Table III.1. Differences between estimated and true parameters for individual and joint models. 

Differences are measured as Estimated Parameter – True Parameter, so positive (negative) values represent 

an estimate that is larger (smaller) than expected. In interpreting the values, note the signs of 𝐰𝟑 and 𝐰𝟒 in 

Equation 3.1: 𝐰𝟑 is fixed to be -1, so its values represent the amount of self-inhibition. For instance, a 

positive (negative) 𝐰𝟑 in the table indicates the self-inhibition is over-estimated (under-estimated) by the 

model (see first column).  The values of 𝐰𝟒 vary in sign depending on the network, so interpretation of the 

differences in the table requires care. When 𝐰𝟒 is negative in both the network and the table (N1, second 

column), inhibition is over-estimated; when 𝐰𝟒 varies in sign between network and table, the extrinsic 

effects are under-estimated (N2 and N3, second column). In these cases, estimation errors in the joint 

model (third and fourth column) approach zero, suggesting this network model becomes identifiable when 

correctly specified. 

Parameter Difference, 

Estimated – True 

w3, 

Individual 

Model 

w4, 

Individual 

Model 

w3, Joint 

Model 

w4, Joint 

Model 

Network N1. w2 + / w4 -     

Mean 3.166 -0.244 0.599 0.019 
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Parameter Difference, 

Estimated – True 

w3, 

Individual 

Model 

w4, 

Individual 

Model 

w3, Joint 

Model 

w4, Joint 

Model 

Standard Deviation 2.050 0.574 1.813 0.635 

Network N2. w2 + / w4 +     

Mean -0.860 -0.942 -0.02 -0.0965 

Standard Deviation 0.180 0.295 0.177 0.341 

Network N3. w2 - / w4 -     

Mean -0.964 0.395 0.096 -0.034 

Standard Deviation 0.428 0.510 0.526 0.605 

 

 In this chapter, we describe not only how to compute a model's enhancement 

score, but also a method to estimate confidence bounds. This estimate of variability is 

important, for example, when interpreting an enhancement score, and determining 

whether it lies significantly above or below 0.  To estimate the confidence bounds, we 

developed a bootstrapping procedure which proceeds as follows: Suppose the original 

model had a design matrix X and spike train y. First, we resample rows from X and y 

with replacement 100-1000 times. We choose the number of resamples depending on the 
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size of the data and the computational load; for simulated networks and mouse multi-unit 

activity we compute 1000 resamples, for seizure data we compute 100 resamples. 

We then compute the enhancement score for each resampled data set. After repeating for 

all resamples, we take as confidence intervals the 5th and 95th percentiles of resampled 

enhancement scores. We show examples of the bootstrapped confidence intervals (shaded 

regions) for the simulated data in Figures III.3, and for the in vivo data in Figures III.4.A 

and III.5.A-B.  

 To test the reliability of this bootstrapping procedure for estimating confidence 

intervals of the enhancement score, we compared the variability estimated by this data 

bootstrapping procedure with that from parameter bootstrapping, which requires 

simulating new data and calculating the enhancement score. Parameter bootstrapping is 

only possible in cases where the true model is known, such as in the simulated network 

implemented here. Figure III.3 shows confidence intervals computed by data 

bootstrapping (blue) and parameter bootstrapping (black) for a range of w4 values with 

w2 held fixed at 3. Thick lines are the median enhancement scores over 1000 

independent 20-second samples of the network. We note that the thick blue line 

corresponds to a horizontal slice across the image of Figure III.2.B at w2 = 3. Across this 

range of w4 values, the score transitions from negative (redundancy) to positive 

(enhancement). Throughout this transition, the two bootstrapping methods give similar 

confidence intervals, as indicated by the overlap in Figure III.3.  While this does not 
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show that data bootstrapping works for all networks, it confirms that the procedure 

estimates reasonable confidence intervals in the case in which the true model is known. 

 

Figure III.3. Confidence intervals for the enhancement score can be reliably bootstrapped with data. 

Comparison of 95% confidence intervals (shaded) for the enhancement score under two bootstrapping 

techniques (see Methods). The confidence intervals are in approximate agreement whether they were 

measured from 1000 independently-generated samples of simulated data (parameter bootstrap, blue) or by 

resampling 100 times from a single pair of spike trains (data bootstrap, gray). 

 

 With the intuition gained from analyzing enhancement in the simulated data, we 

now compute the enhancement between intrinsic and extrinsic effects from two neural 

data sets recorded in vivo. The first data set consists of ictal discharges (IDs): large-

amplitude population spikes, recorded during human seizures. These IDs were described 

in detail in Chapter II. Figure III.4.A shows the distribution of enhancement scores, 
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including confidence intervals (shaded), for a total of 377 MEA electrodes from eleven 

seizures. We find that only a minority of electrodes show redundancy or independence 

between effects. Instead, the majority of electrodes show significant evidence of 

enhancement. 

 A challenge of interpreting enhancement is that it may manifest through different 

sources, as illustrated in the examples shown in Figure III.2.B. To further explore the 

source of enhancement during seizure, we compared the effects estimates for individual 

models where IDs are described purely by intrinsic or extrinsic effects (i.e. rhythmic 

activity or synaptic coupling alone) versus joint models where both effects are included. 

We showed in Table III.1 that, in simulation, the un-modeled effects biased parameter 

estimates in both the positive and negative direction. Therefore, we expect in the human 

seizure data that the intrinsic and extrinsic effects could change in either direction. We 

observed that intrinsic effects indeed changed in both directions when estimated under a 

joint model. A consistent finding across all eleven seizures, however, is that extrinsic 

effects increased in the joint model (Figure III.4, blue) as compared to the individual 

models (Figure III.4.B, red). 

 Interpreting this result in terms of network dynamics, we note that the extrinsic 

coupling during seizure is quite strong (i.e., neighboring brain regions become more 

influential). Without negative feedback such as a refractory period, such positive 

feedback could presumably trigger a runaway spike cascade. We speculate that intrinsic 
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effects, by mitigating instability associated with strong coupling, enhance extrinsic 

effects by allowing them to be large enough to reflect the spatial features of the data. In 

this way, inclusion of the intrinsic effects in a joint model unmasks features in the 

extrinsic effects misallocated in an individual model.  

 The third data set for which we analyzed enhancement was neural spiking 

recorded in mouse cortex. The details of this experimental preparation and recording may 

be found in (James 2016). Briefly, extracellular spikes were recorded simultaneously in 

prefrontal cortex and auditory cortex during passive presentation of an auditory stimulus. 

Individual neurons were then isolated using standard spike sporting techniques during 39 

different experimental blocks, 297 cells in total. Here, we compute the enhancement 

score for the data aggregated from all experimental blocks. For each identified cell, we fit 

model parameters and compute the enhancement; Figure III.5.A illustrates the resulting 

enhancement scores for all blocks and cells, resulting in 297 models in total. As in the 

other examples, shaded regions correspond to 95% confidence intervals estimated using 

the data bootstrapping procedure (see Methods). Observing the enhancement scores in 

Figure III.5.A, we find that the majority of confidence intervals are below zero, 

indicating redundancy in the model effects. For a subset of cells, the enhancement scores 

reach zero, indicating independence. After accounting for the number of comparisons 

performed, we do not find significant evidence for enhancement in these data. In other 

words, the extrinsic effects terms for auditory cortex and prefrontal cortex population 
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spiking describe similar spiking features already captured in the intrinsic effects (self-

history) terms. These results suggest that the recorded spike trains do not influence one 

another directly as much as they influence themselves. This has important consequences 

for any correlation-based analysis of the multi-unit activity: namely we expect to find 

confounds in correlation-based analysis.  As shown in Chapter II, such confounds occur 

unless the self-history effects and ensemble history effects are jointly modeled. We 

hypothesize that these confounds are related to activity induced by the shared stimulus. 

This hypothesis is consistent with the idea that external input can strongly drive primary 

sensory areas such as auditory cortex. 

 

 

Figure III.4. Enhancement is prevalent in ictal discharges during human seizure. 

(A) Histogram of enhancement scores for statistical models of ictal discharges (IDs). Each data point, i.e. 

model, represents one electrode over a 30-second interval during the middle of seizure. Shaded are 95% 

confidence intervals obtained through a data bootstrap procedure (see Methods). In this case, most models 
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show enhancement between intrinsic and extrinsic effects; virtually none show redundancy. (B) Changes in 

intrinsic effects (top) and extrinsic effects (bottom) when the effects are estimated individually versus 

jointly. In this case, intrinsic effects and extrinsic effects generally increase. This consistently holds for 

extrinsic effects in the seizure data, while in some cases intrinsic effects decrease. 

 

 

Figure III.5. Mouse cortical networks show redundancy and independence between spike trains 

during passive listening. 
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(A) Distribution of enhancement ratios for models of multi-unit activity in mouse cortex during passive 

listening. Each data point, i.e. model, represents a sorted cell during a recording block of approximately 

100 trials. Confidence intervals bootstrapped with 1000 resamples (see Methods). Most models show 

redundancy between intrinsic and extrinsic effects (negative score). (B) Zooming in on models with the 

greatest scores, we see that for a subset of models the intrinsic and extrinsic effects are independent (zero 

score). (C) Effects estimates across the model hierarchy for one of the redundant cells in (A). In the case 

shown, intrinsic effects and extrinsic effects both decrease at all lags. While this holds for virtually all 

extrinsic effects models estimated for the auditory data, some intrinsic effects profiles increase under the 

joint model. (D) Effects estimates across the model hierarchy for one of the independent cells in (B). As the 

term implies, estimates are unchanged whether the effects are estimated separately or together. 

 

 To further explore the lack of enhancement in these data, we compared estimates 

for individual models, where the effects are estimated separately, versus joint models, 

where effects are estimated simultaneously. Examples of these different effects for cells 

which exhibit redundancy and independence are shown in panels C and D of Figure III.5, 

respectively. In the case of redundancy (Figure III.5.C) we find that both intrinsic and 

extrinsic effects decrease when estimated together. This is consistent with the notion of 

redundancy, in which effect sizes grow weaker as variables share explanatory power. In 

the case of independence (Figure III.5.D) we find effect sizes remain unchanged. This is 

also consistent with independence: the effects explain different aspects of spiking and 

thus are insensitive to one another. Again, we speculate that redundancy occurs because 

intrinsic and extrinsic effects both indirectly capture features of the stimulus-response. 

 

4. Discussion 

 We estimated the degree of enhancement in three neural data sets. Despite the 

diverse origins of the data, the generalized linear modeling (GLM) framework offers a 
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simple and unified way to analyze each data type. From the GLM deviance we defined an 

enhancement score, which characterizes how well two factors explain spiking together 

versus apart; if the enhancement score is positive (negative), the joint information is 

greater (less) than the sum of individual information. We also presented a bootstrap 

method to estimate confidence bounds for the score. Because of the flexibility of the 

GLM framework, these techniques can be extended to analyze a variety of informational 

interactions among the factors affecting neural spiking. 

 Motivated by Shannon's seminal work on information theory (1948), there has 

been much interest in quantifying information flow in the brain (MacKay and 

McCulloch, 1952; Quian Quiroga and Panzeri, 2009; Rolls and Treves, 2011). This 

approach has been mostly limited to studying sensory encoding, with researchers 

measuring how much information spike trains from different subsets of sensory neurons 

convey about a stimulus (Warland et al., 1997; Rolls, 2003; Pillow and Simoncelli, 

2006). This stage of processing could be summarized as information flow from stimulus 

to neuron; however, the subsequent information processing from neuron to neuron is less 

well-characterized. Indeed, measuring information flow for even simple neural network 

models remains an open problem (Gat and Tishby, 1998).  

 One challenge in the analysis of information flow in neural systems is that the 

measures for comparing information content can be complicated or specific to a 

particular application (Dimitrov et al., 2011). Moreover, developing an interpretation for 
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the functional meaning of enhancement remains a challenge. One possible interpretation 

is that systems with enhancement are likely to be functionally integrated and functionally 

specialized networks (Balduzzi et al., 2008), while systems with redundancy are likely to 

be strongly modular. 

 Here the method proposed for studying enhancement, or information gain due to 

multiple factors affecting spiking, is quite flexible and could be extended to investigate 

information in theoretical models as well as in vitro and in vivo neural systems. 

Moreover, the enhancement score we define to compare information is easily estimated 

from the GLM theory, and confidence intervals can be rapidly computed with as few as 

100 iterations of a bootstrapping procedure. 

 In this chapter, we discuss tools for computing enhancement and provide three 

preliminary analyses. In general, we find that enhancement results from the unmasking of 

misallocated spike-influencing factors that suppress one another due to covariance and 

opposing signs of modulation. However, understanding this phenomenon in a deeper way 

will require continued investigation.  

 For our simulations, we designed a model system with as little complexity as 

possible to facilitate understanding. As a result, several aspects of the system remain to 

be explored. The first is the number of cells; we simulated a network of only two cells 

with all-to-all connectivity. We note that, using the point process GLM, we are able to 

generate simulated data rapidly, so larger networks with more elaborate connectivity 



89 

 

could easily be considered. Understanding how enhancement manifests in larger 

networks is a rich area for exploration, as previously network size has been shown to play 

a role in the observation of enhancement among stimulus information (Narayanan et al., 

2005). Furthermore, neuroscience experiments necessarily sample a limited number of 

cells. Simulating larger networks where only a subset of cells is observed, similar to 

(Pillow and Latham, 2007; Gerhard et al., 2011; Kim et al. 2011), would be useful for 

assessing sensitivity and specificity of the enhancement score with respect to hidden 

influences. 

 Another important aspect that impacts measures of enhancement is the time 

course of intrinsic and extrinsic effects in the GLM. We chose intrinsic and extrinsic 

effects to be single exponential functions for simulation. However, in the observed cases 

of enhancement, namely the seizure data, intrinsic effects have multiple peaks. How 

incorporating these multiple time scales would affect the enhancement with extrinsic 

effects remains unclear. Previous results suggest intrinsic effects can strongly influence 

the propagation of spiking activity through a network (Timofeev et al., 2004; Schneidman 

et al., 2006; Tripathy et al., 2013; Padmanabhan and Urban, 2010; Gjorgjieva et al., 2014; 

Han et al., 2015; Schneidman, 2016). Elucidating the relationship between time scales 

and intrinsic/extrinsic enhancement may shed more light on this phenomenon. 

 A related and unanswered question is how enhancement relates to seizure. 

Intrinsic/extrinsic enhancement scores vary across the microelectrode array (MEA), but it 



90 

 

is unclear why. Earlier work has found that, for some patients, inter-electrode redundancy 

corresponds closely with patches of local synchrony and the seizure onset zone. 

Conversely, informational enhancement was associated with the surrounding area 

(Erramuzpe et al., 2015). Redundancy and enhancement also were observed most 

prominently in high and low frequency bands, respectively. Here we have analyzed a 

different type of enhancement in a more spatially-restricted recording: namely, 

microelectrodes as opposed to electrocorticography (ECoG). We observed no 

redundancy, perhaps because the recording is restricted to a small area outside the seizure 

onset zone. We did, however, observe that enhancement was linked to low frequency 

activity: Intrinsic effects often became unmasked at long lag times (~1500 ms, 0.7 Hz) 

when estimated in a full model, though not always. More work will be necessary to link 

observations of enhancement at the two scales. One possibility is that enhancement 

reflects combined changes in excitation and inhibition (Boido et al., 2014). 

If this type of enhancement relates to the mechanisms underlying seizure, then the 

scores could ultimately inform treatment strategies. For example, recording sites with the 

highest enhancement scores may be interpreted to represent functional hubs because they 

signify areas where both intrinsic and extrinsic effects are prevalent. Therefore, these 

sites could serve as prime targets to disrupt seizure through stimulation or drug delivery. 

 Another direction for future work would examine other types of enhancement. 

Here we have defined and analyzed intrinsic/extrinsic enhancement, which is computed 
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from a GLM with intrinsic and extrinsic effects. By building other GLMs, we can 

compute enhancement between other factors. For example, one interesting quantity might 

be oscillatory/extrinsic enhancement, which compares how spikes and oscillatory fields 

jointly influence a spike train. Currently such influence is estimated separately, for 

instance by spike-spike or spike-field coherence, but measuring enhancement with a 

GLM could offer a more comprehensive picture (Lepage et al., 2013). Similarly, with an 

appropriate choice of GLM we could also compute extrinsic/extrinsic enhancement. This 

measure would compare the effect of network coupling from multiple sub-networks and 

would relate most directly to the earlier uses of information theory in neuroscience. 
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CHAPTER IV. POINT PROCESS MODELING REVEALS A HIERARCHY OF 

FUNCTIONAL NEURON TYPES BASED ON INTRINSIC EFFECTS 

1. Introduction 

 Varying in morphology, genetic expression, spike patterns, and many other 

factors, cells in the brain exhibit considerable diversity (Kawaguchi & Kondo, 2002; 

Moore et al., 2010). A number of characteristic cell types have been described, 

particularly in early sensory systems like the retina (Seung & Sümbül, 2014); however, 

classification schemes vary and are often limited in their scope (Gonchar, 2008; Rudy et 

al., 2011). Building a complete and consistent classification of the brain's cell types 

remains an open problem in the field of neuroscience, and is a critical component of the 

NIH BRAIN Initiative (Bargmann et al., 2014). Such a scheme is important because the 

distribution of neuron types constrains how and where computations can take place in the 

brain. 

 A comprehensive list of cell types, such as the one proposed by the BRAIN 

Initiative, has two related tasks; namely, it must characterize both functional and 

biological aspects of the neuron. Most descriptions of function involve 

electrophysiological measures such as the width of an action potential and the ratio of the 

first interspike interval to the second (Toledo-Rodriguez et al., 2004). More recently, 

molecular assays have made possible exploration of the genetic diversity of neurons and 

the classification of neuron on this basis (Wang et al., 2009). 
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 The relationship between biological and functional types, however, has been 

incompletely mapped. Mensi et al., (2012) characterized and compared function for 

different neuron types in terms of statistical models. They showed that differences in 

model estimates between cell types were large enough to enable automatic classification 

of neurons into three clusters that overlapped with familiar biological classes. 

 In this chapter, we apply the point process GLM to generate functional profiles 

describing the spike outputs of single neurons. We analyze spike data from two neural 

populations: a set of inhibitory interneurons in the mouse medial entorhinal cortex 

(MEC), and a set of ten biological cell types from the Allen Cell Types Database. We 

find that, even though the records are short (3-5 seconds), the intrinsic effects profiles 

successfully cluster both cell populations; in other words, the full range of effects curves 

from the different neurons can be reduced to a small number of representative types. Like 

Mensi et al. (2012), our clusters overlap with biological cell types for both the MEC and 

Allen Cell Types data. These results represent an initial proof of concept and motivate the 

application of the proposed methods to a larger array of neural spike train data. 

 

2. Methods 

 Using statistical models, we analyze the spike trains of various types of neuron in 

response to applied current stimulation. Here we describe the protocols for stimulating 

cells, recording spikes, estimating models, and clustering model effects. All analysis and 



94 

 

visualization was performed using custom MATLAB software (Mathworks; Natick, 

MA). 

2.1. Medial Entorhinal Cortex Interneuron Data 

 First we analyze spike trains recorded from interneurons in the mouse medial 

entorhinal cortex (MEC). The cells we consider are a subset of the ones recorded and 

analyzed by Martinez (2015). We briefly repeat relevant methods here and invite the 

interested reader to consult the original work for more details. Brain slices were harvested 

from the superficial layers of medial entorhinal cortex (MEC) of 18-35 day old transgenic 

mice.  Two transgenic strains were used: cre-dependent GAD2-IRES-tdTomato 

transgenic mice (Taniguchi et al., 2011, The Jackson Laboratories, strain 010802), which 

labeled glutamic acid decarboxylase 2 gene (GAD2) expressing cells and thus facilitated 

targeting of GABAergic cortical interneurons; and PV-tdTomato transgenic mice 

(Hippenmeyer et al., 2005, The Jackson Laboratories, strain 008069), which labeled all 

parvalbumin (PV) expressing cells and thus facilitated targeting of the specific PV+ 

genotype in inhibitory interneurons. 

 All electrophysiological protocols were conducted in current clamp and were 

performed within 30 minutes of breaking the cell membrane to engage the whole cell 

patch clamp recording. For each cell, a bias current was applied in current clamp to 

polarize the cell to -70 mV.  A series of one-second current pulses (with a four second 

rest between pulses) were injected to determine the frequency-current (F-I) relationship 



95 

 

of the cell.  These current pulses ranged from -100 pA to up to 1500 pA, depending on 

what current amplitude was required to reach a firing rate plateau, and were introduced in 

20 nA increments. For point process modeling, we considered only the 5 trials that 

received the most stimulation for each cell. From the original 115 interneurons analyzed 

in (Martinez, 2015), we also excluded any neuron that spiked fewer than 20 times during 

stimulation, leaving 90 cells to analyze. 

 

2.2. Allen Institute Cell Types Data 

 The Allen Institute for Brain Science shares a number of free data sets and tools 

with the neuroscience community. Among them is the Allen Cell Types Database, a 

collection of multimodal data (electrophysiology, morphology, gene expression) from 

single neurons in the mouse visual system (Hawrylycz et al., 2016). Cells in the database 

come from a variety of transgenic mice, each of which facilitates targeting different cell 

types. These data can be viewed and downloaded online at http://celltypes.brain-map.org. 

Also available online are technical whitepapers that describe the protocols for cell 

labeling, recording, and reconstruction. Here we repeat the relevant methods related to 

electrophysiology (Allen Institute for Brain Science, 2016) and invite the interested 

reader to consult the whitepapers for more details. 

 Brain slices are prepared from P45 to P70, male and female transgenic mice 

(either an interneuron or layer specific Cre driver line crossed to an Ai14 tdTomato 

http://celltypes.brain-map.org/
http://celltypes.brain-map.org/
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reporter line). In total, the Allen Cell Types Database consists of cells from sixteen 

transgenic lines. Cells considered here – ones for which a 'Noise 1' stimulus trial was 

recorded (see below) – come from ten of the sixteen lines, described in Table IV.1. 

 Slices (350 µm) are sectioned using a vibrating microtome: each slice is imaged to 

aid in brain region identification and registration to the Allen Mouse Common 

Coordinate Framework (CCF). Whole cell current clamp recordings are made from 

identified, tdTomato-positive neurons or nearby tdTomato-negative neurons for a subset 

of the experimental data. Electrophysiology data were reported with metadata detailing 

experimental conditions such as electrode resistance, tight seal resistance, and series 

resistance, as well as more granular details such as bath temperature and amplifier 

settings on a sweep by sweep basis. 

 Neurons in the Allen Cell Types Database are subjected to a variety of stimulation 

patterns. Stimulation waveforms are designed to: 1) interrogate intrinsic membrane 

properties that contribute to the input/output function of neurons, 2) understand aspects of 

neural response properties in vivo, and 3) construct and test computational models of 

varying complexity emulating the neural response to stereotyped stimuli. In this chapter, 

we restrict our focus to cells responding to a portion of the 'Noise 1' stimulus, a waveform 

that addresses design aim (2) above. 

 The Noise 1 stimulus is pink noise with a coefficient of variation (CV) equal to 

0.2, chosen to resemble in vivo data. An entire trial in the Database consists of three, 3 s 
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noise epochs each superimposed on square pulses at 0.75, 1, and 1.5 times the cell 

rheobase. Recovery intervals between stimuli within a trial are 5 s. Here we consider only 

the third 3 s block, or the time interval 18-21 seconds within each trial. This segment has 

a number of desirable properties: At 3 seconds, the time interval is longer than other 

stimulus patterns such as square pulses. The stimulus here is also strong enough to 

generate a number of spikes and noisy enough to avoid perfectly regular ISIs. These are 

important considerations because spikes trains that are too sparse or regular can introduce 

numerical issues during statistical model estimation (Gerhard et al., 2013) 

 

Table IV.1. Cre driver lines in the Allen Cell Types Database. We analyzed spike trains from ten 

different neuron types in the Allen Cell Types Database, described below. See the Allen Institute 

whitepapers for more information. 

Cre Driver line Originating lab Public repository 

stock 

Cell type  

expression 

Layers of 

expression 

Gad2-IRES-Cre Z. Josh Huang The Jackson 

Laboratory (010802) 

Inhibitory 1-6 

Htr3a-Cre_NO152 Nathaniel Heintz and 

Charles Gerfen 

MMRRC (036680) Inhibitory 1-6 

Nr5a1-Cre Bradford Lowell The Jackson 

Laboratory (006364) 

Excitatory 4 

Ntsr1-Cre_GN220 Nathaniel Heintz and 

Charles Gerfen 

MMRRC (036680) Excitatory 6 
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Cre Driver line Originating lab Public repository 

stock 

Cell type  

expression 

Layers of 

expression 

Pvalb-IRES-Cre Silvia Arber The Jackson 

Laboratory (008069) 

Inhibitory 2-6 

Rbp4-Cre_KL100 Nathaniel Heintz and 

Charles Gerfen 

MMRRC (031125) Excitatory 5 

Rorb-IRES2-Cre Allen Institute for 

Brain Science 

The Jackson 

Laboratory (023526) 

Excitatory 4-5 

Scnn1a-Tg2-Cre Allen Institute for 

Brain Science 

The Jackson 

Laboratory (009112) 

Excitatory 4 

Scnn1a-Tg3-Cre Allen Institute for 

Brain Science 

The Jackson 

Laboratory (009613) 

Excitatory 4-5 

Sst-IRES-Cre Z. Josh Huang The Jackson 

Laboratory (013044) 

Inhibitory 2-6 

 

2.3. Point Process Model 

 For each cell, we fit a point process GLM with model terms representing the cells’ 

baseline firing rate and intrinsic effects (i.e., self-history-dependence) (Truccolo et al., 

2005). Because the cells are recorded individually, with all synaptic input blocked, we 

include no extrinsic effects. The overall model is similar to those implemented in 
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Chapters II and III. See Chapter II: Methods for a more detailed discussion of point 

process GLM and intrinsic effects.  We briefly described the model form here.  We 

discretize time into bins of equal size 𝛥 so that the k-th time point is 𝑡𝑘 : = 𝑘𝛥 and spikes 

are represented as binary time series 𝑑𝑛𝑖,𝑘equal to 1 if a spike occurs in cell i in the time 

interval [𝑡𝑘, 𝑡𝑘+1) and 0 otherwise. As in other cases of single-unit activity analyzed in 

Chapter III, we set 𝛥 = 1 𝑚𝑠. 

 The conditional intensity model for cell i is defined as 

log 𝜆𝑘 = 𝛽0 + ∑ 𝛽𝑘~𝑑𝑛𝑖,𝑘−𝑘~
𝑄
𝑘~=1 . 

where the intrinsic effects extend up to 100 milliseconds for the MEC data set and up to 

500 milliseconds for the Allen Cell Types data. 

 

2.3.1. Dimensional reduction via spline functions. To impose smoothness and avoid 

over-fitting, we replaced the full effects above with 

log 𝜆𝑘 = 𝛽0 + ∑ 𝛽𝑘~𝐵𝑘~(𝑑𝑛𝑖)
𝑄~

𝑘~=1 , 

where ∑ 𝛽𝑘~𝐵𝑘~(𝑑𝑛𝑖)
𝑄~

𝑘~=1 is a representation of the effects in terms of spline basis functions. 

For the MEC data, we place controls points at lags 1, 5, 20, and 100 milliseconds. For the 

Allen Cell Types data, we place control points at 1, 20, 100, 300, and 500 milliseconds. 

Splines reduce the number of parameters in each respective case from 101 to 7 and from 

501 to 8. 
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2.3.2. Smoothing of intrinsic effects for MEC data. Under the type of constant, high-

amplitude stimulation delivered to MEC interneurons, many cells will spike periodically. 

In these cases, the intrinsic effects perfectly predict the absence of spikes at a number of 

lag times (namely, every lag time less than the period of spiking). As a result, intrinsic 

effects at these lags diverge to negative infinity (Gerhard et al., 2013). This can also 

introduce numerical issues at lags longer than the period. Specifically, we found in the 

MEC data that most inter-spike intervals were less than 10-20 ms and, correspondingly, 

that most intrinsic effects estimates were strongest at these short lags. However, the 

intrinsic effects often exhibited multiple peaks corresponding to different aspects of the 

activity. Typically, we observed a peak at the period of spiking, and at multiples of this 

period. To capture the peaks at shorter lags, we smoothed the intrinsic effects estimated 

from the MEC data with an exponentially decaying function before clustering. For each 

lag of 𝜏milliseconds, we multiplied the intrinsic effects by exp(−0.06𝜏). This processing 

step was only applied to the MEC data. 

 

2.3.3. K-means clustering. After estimating the intrinsic effects for all cells within the 

two sets of experimental data, we clustered the (exponentiated) effects using a k-means 

algorithm. The procedure is an expectation-maximization algorithm that iteratively (1) 

computes cluster means, and (2) assigns each data point to the cluster with the nearest 
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mean according to Euclidean distance (James et al., 2013). This procedure is 

implemented in MATLAB as kmeans.m. 

 

3. Results 

 We first fit GLMs to describe the spike-response profiles of a variety of 

stimulated neurons. These neurons come from two different in vitro data sets: one a 

collection of MEC interneurons of PV+ and non-PV+ type stimulated with five square 1-

second pulses, the other a set of cells from the Allen Cell Types Database stimulated with 

a noisy 3-second pulse. We then clustered the resulting spike-response profiles and 

compared the genetic cell types of the cells within each cluster. We found that this 

procedure produced clusters consistent with the known divisions between PV+/non-PV+ 

and excitatory/inhibitory cells. We also found in both data sets unexpected divisions that 

suggest a further refinement of these divisions and merits further investigation. 

 Intrinsic effects profiles estimated for the 90 MEC cells are shown in Figure IV.1. 

The diversity of interneurons in the nervous systems is well-documented, as they are 

known to have widely-varying biological and firing properties (Hajos, 2004; Moore et al., 

2010). We therefore hypothesized that there would be multiple types of response profiles, 

i.e. intrinsic effects, in the GLM estimates. Panels (A) and (B) of Figure IV.1 illustrate 

the effects before and after clustering, respectively. Effect size is depicted in color, with 

warm (cool) colors indicating that spikes are likely (unlikely) after a specific lag time. 
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The blue streaks near lag 0, for instance, reflect the refractory period of each cell. At 

longer lags when the refractory period ends, warm streaks indicate a rebound-excitation-

like phenomenon in certain cells, while green streaks indicate arrhythmic behavior. In 

Figure IV.1 (A) visual inspection reveals that these phenomena, particularly refractory 

period length and degree of rebound excitation, vary among the cells; however, it is 

unclear how many types of responses are present. Separating the effects into four 

clusters, as shown in Figure IV.1 (B) (k-means clustering; see Materials & Methods), 

helps clarify to what extent responses fall into particular types.  

 

Figure IV.1. MEC interneurons' spiking profiles can be clustered into groups based on their 

estimated intrinsic effects. 

(A) Intrinsic effects estimates in a GLM for MEC neurons undergoing in vitro stimulation. Most response 

profiles show a combination of excitability at short (5-10 ms) and/or moderate (20-40 ms) lags (i.e. 100-

200 Hz and 25-50 Hz rhythmicity, respectively). (B) The same intrinsic effects profiles, clustered by 

similarity with a K-means algorithm.  In both figures color indicates the factor by which spike probability 

changes at each lag. Warm (cool) colors suggest the likelihood of spiking is increased (decreased) relative 

to baseline. 
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 When applying the k-means algorithm to the MEC data, we assumed there were 

four clusters. One approach to finding an optimal value of k is to identify the inflection 

point of the within-cluster distance (i.e..the value at which the rate of decrease is 

maximal) (James et al., 2013). Based on a preliminary comparison (i.e. running the 

algorithm one time), we visually identified such an inflection point at k=4. Because 

previous analysis of these MEC interneurons also identified four distinct types among the 

cells (Martinez, 2015), we therefore took k=4 throughout. However, the issue of how to 

cluster the functional profiles remains an open question, as we discuss below. 

 The relationship between PV+ genetic status and cluster membership is shown in 

Table IV.2. Of the four clusters identified by intrinsic effects, two correspond closely 

with PV+ cells (Clusters 1 and 2) and the other two clusters with non-PV+ cells (Clusters 

3 and 4). Indeed, this separation holds for 80 of the 90 cells (89%), with only 2-3 

exceptions per cluster. 

Table IV.2. Spiking profile clusters correlate with genetic cell type in MEC interneurons. Clusters are 

assigned using a K-means algorithm (see Methods). Clusters 1 and 2 correspond closely with PV+ cells, 

while clusters 3 and 4 consist of mostly non-PV+ cells. 

Cluster Number PV+ Interneurons Non-PV+ Interneurons 

1 15 3 

2 14 3 

3 2 38 
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Cluster Number PV+ Interneurons Non-PV+ Interneurons 

4 2 13 

Total 33 57 

 

 In addition to the MEC interneurons we analyzed a collection of spike trains from 

the Allen Institute Cell Types Database. These spike data were recorded in 171 cells 

comprising ten different cell types. Intrinsic effects estimates for all 171 cells appear in 

Figure IV.2. As in Figure IV.1, we show in Figure IV.2 (A) the estimated intrinsic effects 

before clustering and in Figure IV.2 (B) the same estimated intrinsic effects after 

clustering. It is evident from panel Figure IV.2 (A) that short (~10 ms), moderate (30-70 

ms) and long (100-200 ms) time scales figure prominently in the intrinsic effects. Figure 

IV.2 (B) confirms that most cells exhibit some combination of these three time scales, as 

the clusters have visually similar intrinsic effects profiles.  
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Figure IV.2. Allen Database neurons' spiking profiles can be clustered into groups based on their 

estimated intrinsic effects. 

(A) Intrinsic effects estimates in the GLM for neurons in the Allen Cell Types Database recorded in vitro. 

Most response profiles show a combination of excitability at short (~10 ms), moderate (30-70 ms), and or 

long (100-200 ms) lags (i.e. 100, 20, and 10 Hz rhythmicity, respectively). (B) The same intrinsic effects 

profiles, clustered by similarity with a K-means algorithm with k=11.  In both figures color indicates the 

factor by which spike probability changes at each lag. Warm (cool) colors suggest the likelihood of spiking 

is increased (decreased) relative to baseline. 

 We again compared the quality of clustering versus the number of clusters. In this 

case, we found an inflection point at k=11. We therefore set this as the number of clusters 

when applying the k-means algorithm to the Allen Cell Type data. Visual inspection of 

Figure IV.2 (B) reveals that three clusters (Cluster 6, Cluster 10, and Cluster 11) have 

only 1-4 members. These clusters suggest that several outliers – with intrinsic effects that 

differ from the other cell types – occur in the data. Excluding these outliers, we then find 

eight effective clusters for the intrinsic effects of these data.  

 After clustering the estimated intrinsic effects for the Allen Cell Type data, we 

compared the Cre driver lines represented within each functional cluster. The results are 



106 

 

summarized in Figure IV.3. Here rows represent the different cell types, with the six 

excitatory and four inhibitory types separated by a horizontal line, and the columns 

represent clusters estimated from the algorithm. Numbers indicate the cell counts within 

each cluster; unlabeled entries have a cell count of zero. Colors additionally show the 

relative distribution of each row, i.e. how much of each cell type's total count falls in a 

particular cluster. 

 The multiple red blocks and bands in Figure IV.3 suggest strong overlap between 

functional clusters and genetic cell types. In particular, Clusters 7-9 contain roughly half 

of all inhibitory cells (29/56, 52%) and Clusters 2-5 three-quarters of excitatory cells 

(86/115, 75%). We note that Cluster 8, whose intrinsic effects are characterized by fast 

time scales, contains 100% of the PV+ neurons. These results suggest that the estimated 

intrinsic effects capture functional properties of the cells’ spiking activity that align with 

the differences in their genetics. 

 We also observe additional structure in the clustered functional profiles beyond 

the separation between excitatory and inhibitory cell type. To see this, we focus on the 41 

cells whose classification violates expectation (i.e., from the 171 cells we exclude the 115 

that follow the expected excitatory/inhibitory types [Clusters 2-5 and 7-9] and the 15 

cells in “noisy” Clusters 1, 6, 10, and 11). Among this sub-collection of 41 cells, we 

observe two notable trends. First, 7 of 10 Ntsr1-Cre cells fall into the presumptive 

“inhibitory” clusters (Clusters 7-9). Second, 14 of 29 Sst-IRES-Cre cells are in excitatory 
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clusters. Therefore while many cells have a stereotypical response based on being 

excitatory or inhibitory, there are still exceptions. These results suggest that cells from 

Sst-IRES-Cre and Ntsr1-Cre lines in particular may have multiple sub-types. Such an 

idea is supported by results in neurobiology, where multiple genetic subtypes of 

somatostatin-positive interneurons have been observed (Gonchar, 2008). Functional 

profiling may help clarify which biological differences are superficial and which lead to 

changes in the cell's spike-response. 

 

Figure IV.3. Spiking profile clusters correlate with genetic cell type from the Allen Cell Types 

Database. 
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Clustering results (horizontal axis) versus cell type (vertical axis). Numbers indicate the number of cells per 

cluster, while colors show the fraction of each cell type contained in a particular cluster. Unlabeled entries 

are zero. A horizontal line separates excitatory (top) versus inhibitory (bottom) cell types. Red blocks and 

bands indicate strong overlap between cluster and cell type. Clusters 2-5 and 7-9 correspond well with 

excitatory and inhibitory cells, respectively. 

 

4. Discussion 

 In this chapter, we computed a set of functional response profiles for neurons of 

different cell types. These neurons came from two data sets. The first is a collection of 90 

PV+ and non-PV+ interneurons in the mouse MEC. The second is a set of 171 cells from 

the Allen Institute Cell Types Database comprising ten different cell types. We found a 

diverse set of responses, as illustrated in Figures IV.1 and IV.2. Clustering these 

functional responses, we concluded that they strongly correlate with the biologically 

identified cell types in both data sets, as shown in Table IV.2 and Figure IV.3. 

 These results represent further proof of concept that the GLM intrinsic effects can 

be successfully used as a feature space to cluster neurons. Mensi et al. (2012) used a 

similar technique to analyze 27 cells and discussed its potential utility in a high-

throughput setting. By analyzing nearly 200 cells of ten different types, we provide an 

example of the increased scale accessible to this statistical modeling approach. These 

results inspire confidence that high-throughput screening of a cells functional profile, as 

described in (Mensi et al., 2012), may be achievable. 

 While our results show proof of concept, they do not yet suggest a definitive 

method for classifying functional cell types. Indeed, several issues remain to be resolved. 
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The first is which clustering algorithm to use. As more data become available, the 

performance and assumptions of different clustering algorithms should be systematically 

compared. Here we applied k-means clustering, which assumes clusters are spherical and 

have similar numbers of cells. Another approach would be to use a hierarchical clustering 

method (James et al., 2013). The advantage of this approach would be that it assumes 

neither an a priori number of clusters, nor similar cluster sizes, which allows for greater 

flexibility in cluster discovery. 

 The second issue to be resolved is how to establish the number of clusters present 

in the data. Here we approach this by comparing the inter-areal cluster distance and 

identifying where it has an inflection point. Related approaches identify an inflection 

point based on the total variance explained (James et al., 2013), using a silhouette method 

where inter- and intra-cluster distances are compared (Rousseeuw, 1987), or by 

computing a bootstrapped gap statistic (Tibshirani et al., 2001).  

 Finally, we note that the clustering of the estimated intrinsic effects revealed 

distinctions beyond the most basic identification of cells as either excitatory or inhibitory. 

A cell's functional profile (i.e., how it spikes in response to stimuli) may reveal subtle 

distinctions that further sub-classify the cells within each group. Whether these 

distinctions are more relevant, less relevant, or complementary to distinctions based on 

genetics remains unknown. A more complete understanding of the identified sub-
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classifications – and their potential relevance for behavior and disease – remains an 

important topic for further research.  
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CHAPTER V. CONCLUSION 

1. Impact and Innovation 

 This dissertation concerns the problem of inferring history-dependent structure in 

neural spike trains. The point process GLM provides a flexible and rigorous framework 

for this type of analysis. We adapted this framework to apply in a variety of neural data 

sets in order to address clinical and experimental questions. Here we summarize the 

contributions of this work to the field and discuss future directions of research. 

1.1. A rigorous and patient-specific approach to seizure analysis 

 Before our work on ictal discharges (IDs) in Chapter II, the point process GLM 

had been exclusively applied in neuroscience to characterize action potentials generated 

by individual neurons. IDs are field effects and physiologically distinct from action 

potentials, yet in Chapter II we show that IDs and action potentials can be analyzed using 

the same GLM framework. This is useful for at least two reasons. First, the point process 

GLM provides a rigorous procedure to estimate important features (e.g., history 

dependence) from observed data.  Second, the point process GLM provides a bridge 

between the observed data and features of biophysically detailed models (e.g., time 

scales). This combination of properties becomes quite useful in the clinical domain: By 

using the point process GLM we construct patient-specific and seizure-specific models of 

activity, which then facilitates comparison and simulation, and development of 

hypotheses with biophysical interpretation. 
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1.2 A generalizable method for measuring enhancement 

 Enhancement has only been measured in a handful of neural systems. Previously, 

measures of enhancement have focused on how information about a stimulus is 

distributed across multiple spike trains. Transmitting information about external stimuli, 

however, is only one facet of the neural code. Another important challenge is to 

understand how information manifests at higher levels of abstraction not directly related 

to the stimulus, and how information is passed between brain areas. In Chapter III we 

developed a tool to measure this information flexibly and robustly. We created this tool 

using the point process GLM framework, and through comparison of increasingly 

complex statistical models. We showed in simulation that the proposed measure 

accurately detected cases of redundancy and enhancement, and developed assess the 

significance of these detections. We also demonstrated that enhancement occurs in 

scenarios beyond stimulus coding, for instance between intrinsic and extrinsic effects 

during human seizure. 

1.3 A method for clustering neurons according to their function 

 In Chapter IV, we demonstrated how the GLM can be used to classify neuronal 

cell types. The functional description of cells offered by the GLM complements 

biological descriptions provided by genetic assays. Whereas earlier functional 

descriptions have relied on a series of ad-hoc descriptive measures (e.g. action potential 

width), our description is based on a larger statistical modeling framework that is easily 
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extended, quickly estimated, and has established techniques to assess goodness-of-fit. We 

found that intrinsic effects profiles reliably distinguished a number of cell types, most 

notably PV+ versus non-PV+ cells in the MEC and a large fraction of excitatory versus 

inhibitory neurons in the Allen Cell Types Database. Furthermore, this analysis of 

functional properties hints at sub-structure in both data sets: namely, potential divisions 

within cell types as well as exotic cell types composed of unexpected combinations. 

 

2. Future Directions 

2.1. Understanding and extending enhancement 

 In Chapter III, we used the GLM to compute informational enhancement between 

intrinsic and extrinsic effects. While classical enhancement has been interpreted in terms 

of sparseness of a neural code, the type of enhancement detected here is more challenging 

to interpret. To aid in our interpretation, we simulated data from a simple two-cell 

network that exhibits both redundancy and enhancement. These simulated data offered 

some insights – mostly notably a straightforward procedure to produce redundancy and 

enhancement between intrinsic and extrinsic effects. 

 However, understanding enhancement in a deeper way and how it relates to neural 

systems will require continued simulations. For our simulations, we designed a system 

with as little complexity as possible. As a result, several aspects of the system remain to 

be explored. First is the number of cells; we simulated a network of only two cells with 
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all-to-all connectivity. We note that, using the point process GLM, we are able to 

generate simulated data rapidly, so larger networks with more elaborate connectivity 

could easily be considered. Understanding how enhancement manifests in larger 

networks is a rich area for exploration, as previously network size has been shown to play 

a role in the observation of enhancement among stimulus information (Narayanan et al., 

2005). Furthermore, neuroscience experiments necessarily sample a limited number of 

cells. Simulating larger networks where only a subset of cells is observed, similar to 

(Pillow and Latham, 2007; Gerhard et al., 2011; Kim et al. 2011), would be useful for 

assessing sensitivity and specificity of the enhancement score with respect to hidden 

influences. 

 Another important aspect that impacts measures of enhancement is the time 

course of intrinsic and extrinsic effects in the GLM. We chose intrinsic and extrinsic 

effects to be single exponential functions for simulation. However, in the observed cases 

of enhancement, namely the seizure data, intrinsic effects have multiple peaks. How 

incorporating these multiple time scales would affect the enhancement with extrinsic 

effects remains unclear. Previous results suggest intrinsic effects can strongly influence 

the propagation of spiking activity through a network (Timofeev et al., 2004; Tripathy et 

al. 2013; Padmanabhan and Urban 2010; Gjorgjieva et al. 2014; Han et al. 2015). 

Elucidating the relationship between time scales and intrinsic/extrinsic enhancement may 

shed more light on this phenomenon. 
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 A related and unanswered question is how enhancement relates to seizure. 

Intrinsic/extrinsic enhancement scores vary across the microelectrode array (MEA), but it 

is unclear why. If this type of enhancement relates to the mechanisms underlying seizure, 

then the scores could ultimately inform treatment strategies. For example, recording sites 

with the highest enhancement scores may be interpreted to represent functional hubs. 

Therefore, these sites could serve as prime targets to disrupt seizure through stimulation 

or drug delivery. 

 Another direction for future work would examine other types of enhancement. 

Here we have defined and analyzed intrinsic/extrinsic enhancement, which is computed 

from a GLM with intrinsic and extrinsic effects. By building other GLMs, we can 

compute enhancement between other factors. For example, one interesting quantity might 

be oscillatory/extrinsic enhancement, which compares how spikes and oscillatory fields 

jointly influence a spike train. Currently such influence is estimated separately, for 

instance by spike-spike or spike-field coherence, but measuring enhancement with a 

GLM could offer a more comprehensive picture (Lepage et al. 2013). Similarly, with an 

appropriate choice of GLM we could also compute extrinsic/extrinsic enhancement. This 

measure would compare the effect of network coupling from multiple sub-networks and 

would relate most directly to the earlier uses of information theory in neuroscience. 
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2.2. Clustering by functional profile 

 In Chapter IV, we used the GLM to cluster cells by their functional profiles. 

These results demonstrate that the intrinsic effects are useful as a feature space for 

clustering. Our results do not, however, provide a definitive method for clustering. 

Indeed, many details remain to be explored. One key issue is the selection of clustering 

algorithm; here we chose k-means, which is practical for its speed and intuitive 

simplicity. However, its assumptions – namely that clusters have elliptic shape and 

uniform size – are likely too unrealistic in large-scale neural data. The latter is especially 

problematic, since it seems possible that certain cell types – and perhaps even the most 

interesting ones – may be relatively uncommon compared to others. Future work should 

compare clustering algorithms in a systematic way and, importantly, evaluate their 

underlying assumptions. Furthermore, such work should consider how pre-processing 

affects clustering results. We observed “noisy” clusters – proposed to consist of outliers – 

in the Allen Cell Types data and found perfect predictors, which complicate numerical 

estimation, in the MEC data. Both issues merit careful pre-processing, which could be 

done prior to fitting models or afterwards. The goodness-of-fit tests available for point 

process models could prove useful in evaluating which model effects to discard before 

the clustering stage. 

 Like enhancement, future work on clustering benefits from the flexibility of the 

GLM framework. A natural approach to extend the feature space for clustering is to 
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extend the type of GLM being estimated. Here we considered a GLM with intrinsic 

effects, but extrinsic effects (relating to network connectivity), oscillatory effects 

(relating to LFP dynamics), and stimulus effects (particularly for sensory systems) could 

all prove useful in classifying cells. Indeed, because the cells they record are stimulated 

with known patterns designed to mimic synaptic input, Mensi et al. (2012) include 

extrinsic effects estimates in their feature space. These effects are not appropriate for the 

data sets analyzed in this thesis, in which the cells are recorded independently. We 

therefore exclude extrinsic effects here.  Future work could design stimulation and/or 

recording protocols that probe network connectivity across different cell types. This 

description would further enrich the functional profiles we have compiled in Chapter IV.  
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